第第 1 1 章章 集合集合 章末复习课章末复习课 一、集合的含义及表示 1集合的特征是确定性、互异性、无序性,其中互异性是我们必须进行检验的一方面,否则 集合中的元素便有了重复,在列举法、描述法、Venn 图法三种集合表示法中,描述法略有难 度,解题时应注意分清代表元素是什么,有什么共同特征 2掌
第1章 常用逻辑用语 章末复习学案含答案Tag内容描述:
1、第第 1 1 章章 集合集合 章末复习课章末复习课 一、集合的含义及表示 1集合的特征是确定性、互异性、无序性,其中互异性是我们必须进行检验的一方面,否则 集合中的元素便有了重复,在列举法、描述法、Venn 图法三种集合表示法中,描述法略有难 度,解题时应注意分清代表元素是什么,有什么共同特征 2掌握集合的表示方法,重点提升逻辑推理素养 例 1 设集合 A 中含有三个元素 2x5,x24x,。
2、章末复习集合考点一集合的基本概念例1(1)已知集合A0,1,2,则集合Bxy|xA,yA中元素的个数是()A1 B3 C5 D9(2)已知集合A0,m,m23m2,且2A,则实数m为()A2 B3 C0或3 D0,2,3均可答案(1)C(2)B解析(1)逐个列举可得x0,y0,1,2时,xy0,1,2;x1,y0,1,2时,xy1,0,1;x2,y0,1,2时,xy2,1,0.根据集合中元素的互异性可知集合B中的元素为2,1,0,1,2,共5个(2)由2A可知:若m2,则m23m20,这与m23m20相矛盾;若m23m22,则m0或m3,当m0时,与m0相矛盾,当m3时,此时集合A0,3,2,符合题意反思感悟(1)研究一个集合,首先要看集合中的代表元素,然后再看。
3、第第 2 2 章章 常用逻辑用语常用逻辑用语 时间:120 分钟 满分:150 分 一单项选择题本大题共 8 小题,每小题 5 分,共 40 分 1已知命题若 p,则 q,假设若 q,则 p为真,则 p 是 q 的 A充分条件 B必要条件 。
4、章末检测试卷章末检测试卷(一一) (时间:120 分钟 满分:150 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.已知集合 A1,a,B1,2,3,则“a3”是“AB”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 充分、必要条件的判断 题点 充分不必要条件的判断 答案 A 解析 当 a3 时,A1,3,AB; 当 AB 时,a2 或 3. 所以“a3”是“AB”的充分不必要条件. 2.命题“任意 nN,f(n)n”的否定是( ) A.任意 nN,f(n)n B.任意 nN,f(n)n C.存在 nN,f(n)n D.存在 nN,f(n)n 考点 全称量词的否定 题点。
5、章末检测章末检测(一一) (时间:120 分钟 满分:150 分) 一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分) 1.下列语句中是命题的个数为( ) “等边三角形难道不是等腰三角形吗?”; “平行于同一条直线的两条直线必平行吗?”; “一个数不是正数就是负数” ; “x y 为有理数,则 x,y 也都是有理数”; “作ABCABC”. A.1 B.2 C.3 D.4 解析 根据命题的概念,判断是不是命题. 不是陈述句,不是命题. 疑问句.没有对平行于同一条直线的两条直线是否平行作出判断,不是命题. 是假命题.0 既不是正数也不是负数. 是假命题.如 x 3,y 3.。
6、第第 2 章章 常用逻辑用语常用逻辑用语 时间:120 分钟 满分:150 分 一单项选择题本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中只有一项 符合题目要求 1.m,nZ,使得 m2n22 019 的否定是 。
7、第第 2 2 章章 常用逻辑用语常用逻辑用语 章末复习课章末复习课 一充分条件必要条件与充要条件 1若 pq,且 qp,则 p 是 q 的充分不必要条件,同时 q 是 p 的必要不充分条件; 若 pq,则 p 是 q 的充要条件,同时 q 。
8、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1已知集合A1,a,B1,2,3,则“a3”是“AB”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件答案A解析当a3时,A1,3,AB;当AB时,a2或3.所以“a3”是“AB”的充分不必要条件2命题“nN*,f(n)n”的否定是()AnN*,f(n)nBnN*,f(n)nCnN*,f(n)nDnN*,f(n)n答案A3下列命题中,不是全称命题的是()A任何一个实数乘以0都等于0B自然数都是正整数C所有的素数都是奇数D一定存在没有最大值的二次函数答案D解析D选项是存在性命题4设xR,则。
9、章末复习章末复习 学习目标 1.理解命题及四种命题间的相互关系.2.掌握充分条件、必要条件的判定方法.3. 理解逻辑联结词的含义,会判断含有逻辑联结词的命题的真假.4.理解全称量词、存在量词的 含义,会判断全称命题、特称命题的真假,会求全称命题和特称命题的否定. 1.命题及其关系 (1)判断一个语句是否为命题,关键是: 为陈述句; 能判断真假. (2)互为逆否命题的两个命题的真假性相同. (3)四种命题之间的关系如图所示. 2.充分条件与必要条件 (1)如果 pq,那么称 p 是 q 的充分条件,q 是 p 的必要条件. (2)分类: 充要条件:pq 且 qp,。
10、章末检测(一)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列语句中是命题的个数_.平行于同一条直线的两条直线必平行吗?一个数不是正数就是负数.xy为有理数,则x,y也都是有理数.作ABCABC.解析根据命题的概念,判断是不是命题.疑问句.没有对平行于同一条直线的两条直线是否平行作出判断,不是命题.是假命题.0既不是正数也不是负数.是假命题.如x,y.是祈使句,不是命题.答案22.命题“若,则tan 1”的逆否命题是_.解析命题“若,则tan 1”的逆否命题是“若tan 1,则”.答案若tan 。
11、章末复习课网络构建核心归纳1.要注意全称命题、特称命题的自然语言之间的转换.2.正确理解“或”的意义,日常用语中的“或”有两类用法:其一是“不可兼”的“或”;其二是“可兼”的“或”,我们这里仅研究“可兼”的“或”.3.有的命题中省略了“且”“或”,要正确区分.4.常用“都是”表示全称肯定,它的特称否定为“不都是”,两者互为否定;用“都不是”表示全称否定,它的特称肯定可用“至少有一个是”来表示.5.在判定充分条件、必要条件时,要注意既要看由 p 能否推出 q,又要看由 q 能否推出 p,不能顾此失彼.证明题一般是要求就充。
12、第一章 集合与常用逻辑用语 满分:150 分 时间:120 分钟 一选择题本大题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有 一项是符合题目要求的 1下列表示正确的是 A所有实数R B整数集Z C D1有理数 。
13、章末复习学习目标 1.梳理本章知识要点,构建知识网络.2.进一步理解命题、联结词及充要条件的相关概念.3.能应用相关知识和方法解决相关问题1全称命题与存在性命题(1)判断全称命题为真命题,需严格的逻辑推理证明,判断全称命题为假命题,只需举出反例即可(2)判断存在性命题为真命题,需要举出正例,而判断存在性命题为假命题时,要有严格的逻辑证明(3)含有一个量词的命题否定的关注点全称命题的否定是存在性命题,存在性命题的否定是全称命题否定时既要改写量词,又要否定结论2简单的逻辑联结词“且、或、非”命题的真假判断可以概括为口诀。
14、1怎样解逻辑用语问题1利用集合理清关系充分(必要)条件是高中学段的一个重要概念,并且是理解上的一个难点要解决这个难点,将抽象的概念用直观、形象的图形表示出来,看得见、想得通,才是最好的方法下面通过使用集合模型对充要条件的外延与内涵作了直观形象的解释,实践证明效果较好集合模型解释如下:A是B的充分条件,即AB.(如图1)A是B的必要条件,即BA.(如图2)A是B的充要条件,即AB.(如图3)A是B的既不充分又不必要条件,即AB或A,B既有公共元素也有非公共元素(如图4)或图4例1设集合A,B是全集U的两个子集,则AB是(UA)BU的_条件(填“充分。
15、第一章第一章 集合与常用逻辑用语集合与常用逻辑用语 章末复习课章末复习课 一集合的基本概念 1理解集合的概念集合的特点常用数集的表示元素与集合的表示方法元素与集合之 间的关系,针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合。
16、第一章第一章 集合与常用逻辑用语集合与常用逻辑用语 章末复习提升章末复习提升 要点一 集合的基本概念 与集合中的元素有关问题的求解策略 1确定集合的元素是什么,即集合是数集还是点集. 2看这些元素满足什么限制条件. 3根据限制条件列式求参数。
17、章末复习一、选择题1下列命题中为真命题的是()AxR,x213DxQ,x2Z答案B2下列存在性命题是假命题的是()A存在xQ,使2xx30B存在xR,使x2x10C有的素数是偶数D有的有理数没有倒数答案B解析对于任意的xR,x2x120恒成立3设x0,yR,则“xy”是“x|y|”的()A充要条件 B充分不必要条件C必要不充分条件 D既不充分又不必要条件答案C解析由xy推不出x|y|,由x|y|能推出xy,所以“xy”是“x|y|”的必要不充分条件4已知命题p:xR,x2;命题q:x,使sin xcos x,则()Ap真q假 Bp假q真Cp真q真 Dp假q假答案B5下列说法正确的是()A“x&。
18、知识网络 第1章常用逻辑用语 知识网络要点归纳题型研修 第1章常用逻辑用语 章末复习 高中数学选修1-1湘教版 知识网络 第1章常用逻辑用语 知识网络要点归纳题型研修 知识网络 第1章常用逻辑用语 知识网络要点归纳题型研修 知识网络 第1章常用逻辑用语 知识网络要点归纳题型研修 知识网络 第1章常用逻辑用语 知识网络要点归纳题型研修 知识网络 第1章常用逻辑用语 知识网络要点归纳题型研修 知识网络。
19、第第 2 2 章章 常用逻辑用语常用逻辑用语 章末复习课章末复习课 一、充分条件、必要条件与充要条件 1若 pq,且 qp,则 p 是 q 的充分不必要条件,同时 q 是 p 的必要不充分条件; 若 pq,则 p 是 q 的充要条件,同时 q 是 p 的充要条件 2掌握充要条件的判断和证明,提升逻辑推理和数学运算素养 例 1 (1)设 xR,则“x3 或 x4”的( ) A充分不必要条件 B。
20、章末复习学习目标1.掌握充分条件、必要条件的判定方法.2.理解全称量词、存在量词的含义,会判断全称命题、存在性命题的真假,会求含有一个量词的命题的否定1充分条件与必要条件(1)如果pq,那么称p是q的充分条件,q是p的必要条件(2)分类:充要条件:pq且qp,记作pq;充分不必要条件:pq,qp;必要不充分条件:qp,pq;既不充分又不必要条件:pq,且qp.2全称量词与存在量词(1)全称量词与全称命题:全称量词用符号“”表示全称命题用符号简记为xM,p(x)(2)存在量词与存在性命题:存在量词用符号“”表示存在性命题用符号简记为xM,p(x)3含有。