13解直角三角形(1) 1在RtABC中,C90,根据下列条件填空: (1)若A30,c8,则B_60_,a_4_,b_4_; (2)若a,c2,则A_45_,B_45_,b_ 2在RtABC中,C90,a2,cosB,则b等于(C) A. B2 C4 D. (第3题) 3如图,在矩形ABCD中,D
第1章解直角三角形Tag内容描述:
1、13解直角三角形(1)1在RtABC中,C90,根据下列条件填空:(1)若A30,c8,则B_60_,a_4_,b_4_;(2)若a,c2,则A_45_,B_45_,b_2在RtABC中,C90,a2,cosB,则b等于(C)A. B2 C4 D.(第3题)3如图,在矩形ABCD中,DEAC于点E.设ADE,且cos,AD,则AB的长为(B)A3B4C5D64一个等腰三角形的腰长为13 cm,底边长为10 cm,则它的底角的正切值为(C)A. B. C. D.(第5题)5如图,CD是RtABC斜边AB上的高将BCD沿CD折叠,点B恰好落在AB的中点E处,则A等于(B)A25B30 C45D60(第6题)6。
2、1.3解直角三角形(一)一、选择题(共5小题)1、在直角坐标系xOy中,点P(4,y)在第一象限内,且OP与x轴正半轴的夹角为60,则y的值是()A、 B、C、8 D、22、如图,平面直角坐标系中,直线AB与x轴的夹角为60,且点A的坐标为(2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A、B、C、D、3、如图,已知OA=6,AOB=30,则经过点A的反比例函数的解析式为()A、 B、C、 D、4、如图,已知在矩形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点若sinAEH=,AE=5,则四边形EFGH的面积是()A、240 B、60C、120 D、1695、如图,点C在线段AB上。
3、第四章 三角形,第18讲 等腰三角形、等边三角形、直角三角形,01,02,03,04,目录导航,课 前 预 习,80,22,B,C,A,D,9或1,考 点 梳 理,垂直平分线,三,60,一半,中线,直角,一半,课 堂 精 讲,B,65,37,50或20或80,A,C,3,A,(1,0),往年 中 考,A,。
4、? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 槡 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?槡 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 槡 ? ? ? ? ? ? ? ?槡 ? ? 槡 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 。
5、 4.3 4.3 解直角三角形解直角三角形 第第4 4章章 锐角三角函数锐角三角函数 教学目标教学目标 通过综合运用勾股定理,直角三角形的两个锐角互余通过综合运用勾股定理,直角三角形的两个锐角互余 及锐角三角函数解直角三角形,逐步培养学生分析及锐角三角函数解直角三角形,逐步培养学生分析 问题、解决问题的能力问题、解决问题的能力 重点:重点:理解解直角三角形的概念;学会解直角三角形理解解直角三角形。
6、28.2 解直角三角形 第1课时,1、使学生理解直角三角形中六个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形; 2、渗透数形结合的数学思想,培养学生良好的学习习惯.,(1) 三边之间的关系:a2+b2=_,(2)锐角之间的关系:A+B=_,(3)边角之间的关系:sinA=_,cosA=_tanA=_,在RtABC中,共有六个元素(三条边,三个角),其中C=90,那么其余五个元素之间有怎样的关系呢?,c2,90,利用计算器可得 .,根据以上条件可以求出塔身中心线与垂直中 心线的夹角你愿意试着计算一下吗?,如图设塔顶中心点为B,塔身中心线与垂。
7、第 1 章 解直角三角形12017金华在 RtABC 中,C90,AB5,BC3,则 tanA 的值是( )A. B. C. D.34 43 35 4522017兰州如图 1 BZ1,一个斜坡长为 130 m,坡顶到水平地面的距离为 50 m,那么这个斜坡与水平地面夹角的正切值等于( )A. B. C. D.513 1213 512 1312图 1 BZ1图 1 BZ232017绥化某楼梯的侧面如图 1 BZ2 所示,已测得 BC 的长约为 3.5 米,BCA约为 29,则该楼梯的高度 AB 可表示为( )A3.5 sin29米 B3.5 cos29米C3.5 tan29米 D. 米3.5cos2942017绍兴如图 1 BZ3,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 。
8、第四章第四章 锐角三角函数锐角三角函数 4.4 4.4 解直角三角形的应用解直角三角形的应用 基础导练基础导练 1.如图,从热气球 C 上测定建筑物 A、B 底部的俯角分别为 30和 60,如果这时气球的高度 CD 为 150 米,且点 A、D、B 在同一直线上,建筑物 A、B 间的距离为( ) A.150米 B.180米 C.200米 D.220米 2.小强和小明去测量一座古。
9、7.5第1课时解直角三角形知识点解直角三角形1.如图7-5-1,在RtABC中,C=90,AC=4,tanA=12,则BC的长是()图7-5-1A.2 B.8 C.25 D.452.在RtABC中,C=90,如果AB=6,cosA=23,那么AC=.3.如图7-5-2,在RtABC中,CD是斜边AB上的中线,已知AC=8, sinB=45,则CD=.图7-5-24.如图7-5-3,已知ABC,过点A作BC边的垂线,交BC于点D,若BC=5,AD=4, tanBAD=34,则DC=.图7-5-35.在RtABC中,C=90,A=30,c=8,求a,b的大小.(a,b,c分别为A,B,C所对的边)6.在RtABC中,C=90,a,b,c分别为A,B,C所对的边,请根据下列条件解直角三角形:(1)a=10,A。
10、 1 / 22 第第 1 章章 解直角三角形单元测试解直角三角形单元测试(B 卷提升篇)卷提升篇) 【浙教版】 参考答案与试题解析 一选择题(共一选择题(共 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分) 1 (3 分) (2020姑苏区一模)如图,ABC 中,C90o,tanA2,则 cosA 的值为( ) A B C D 【思路点拨】根据 tanA2,于是设 CB2k,A。
11、 1 / 19 第第 1 章章 解直角三角形单元测试解直角三角形单元测试(A 卷基础篇)卷基础篇) 【浙教版】 参考答案与试题解析 一选择题(共一选择题(共 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分) 1 (3 分) (2020滨湖区二模)锐角三角函数 tan30的值是( ) A1 B C D 【思路点拨】直接利用特殊角的三角函数值得出答案 【答案】解:tan30 故选:B。
12、 第四章第四章 锐角三角函数锐角三角函数 4.3 4.3 解直角三角形解直角三角形 基础导练基础导练 1.在 RtABC 中,C=90,若 a=,B=30,则 c 和 tan A 的值分别为( ) A.12, B.12, C.4, D.2, 2.在 RtABC 中,C=90,已知 a 和 A,则下列关系中正确的是( ) A.c=a sin A B.c=a/sin A C.c=。
13、义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 解解 直直 角角 三三 角角 形形 1.1.两锐角两锐角之间的关系之间的关系: : 2.2.三边三边之间的关系之间的关系: : 3.3.边角边角之之 间的关系间的关系 A+B=90A+B=900 0 a a2 2+b+b2 2=c=c2 2 C A B 的邻边 的对边 正切函数: 斜边。
14、,苏科数学 九年级(下册),7.5 解直角三角形(2),南京师大附中江宁分校 叶军,问题情境,1什么是解直角三角形? 2在RtABC中,C90,根据条件,解下列直角三角形: (1)已知A30,BC2; (2)已知B45,AB6; (3)已知AB10,BC5; (4)已知AC6,BC8,试一试,如图,在ABC中,AC8, A=30,B=45 ,求AB.,D,例4 .如图,O的半径为10,求O的内接正五边形ABCDE的边长. (精确到0.1,sin36 0.588),练习,1.在 ABCD中,A=60,AB=8,AD=6,求ABCD的面积.,练习,2.求半径为12的圆的内接正八边形的边长(精确到0.1).,练习,3.等腰ABC中,AB=AC=13,BC=10,求顶角的大小,小结。
15、义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 解解 直直 角角 三三 角角 形形 1.两锐角之间的关系两锐角之间的关系 : 2.三边之间的关系三边之间的关系: 3.边角之间边角之间 的关系的关系 A+ +B= =90 a2+ +b2= =c2 C A B sin cos tan cot A A A A A A A A A A =。
16、第 1 章 解直角三角形专题训练 解直角三角形应用中的基本模型 模型一 平行线型图图 11ZT11如图 11ZT1,有一张简易的活动小餐桌,现测得 OA OB30 cm, OC OD50 cm,桌面离地面的高度为 40 cm,则两条桌腿的张角 COD 的度数为_ 模型二 “一线三等角”型图2将一盒足量的牛奶按如图 11ZT2所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点 P 时停止倒入图是它的平面示意图,请根据图中的信息,求出容器内牛奶的高度(结果精确到 0.1 cm,参考数据: 1.73, 1.41)3 2图 11ZT2 模型三 “梯形及其高”的基本图形3某地的一座人行天。
17、,苏科数学 九年级(下册),7.5解直角三角形(1),南京师大附中江宁分校 叶军,提出问题,登山运动员从营地A沿坡角为30的斜坡AB到达山顶B,如果AB=2000米,他实际上升了多少米?,数学探索,在RtABC中,C=90,A、B、a、b、c这5个元素之间有怎样的数量关系?,总结归纳,在RtABC中,C=90,A、B、a、b、c这5个元素之间有如下的数量关系:,(1)三边之间: (2)锐角之间:A=B=90; (3)边和角之间:,探索与思考,直角三角形的2个锐角和3条边这5个元素中,需要知道哪几个元素,就能确定其余的未知元素的值?,由直角三角形的边、角中的已知元素,求出所有边、。
18、义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 在直角三角形中共有五个元素:在直角三角形中共有五个元素: 边边a,b,c, 锐角锐角A,B.这五个元素之间有如下等这五个元素之间有如下等 量关系:量关系: A B C c a b ( (1 1) )三边之间关系三边之间关系: a a2 2 +b +b2 2 =c。
19、义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 锐 角 三 角 函 数 锐 角 三 角 函 数 解 直 角 三 角 形 解 直 角 三 角 形 实 际 问 题 实 际 问 题 1 1、锐角三角函数的概念、锐角三角函数的概念 正弦正弦 余弦余弦 正切正切 A 的 A 的 sinA cosA tan A A 的对边 斜边 A 的邻。