第1课时 导数与函数的单调性 基础达标 1函数f(x)x,xR的单调递增区间是() A(0,)B(,0) C(,1)D(1,) 解析:选D.由题意知,f(x),令f(x)0,解得x1,故选D. 2函数f(x)1xsin x在(0,2)上的单调情况是() A增函数B减函数 C先增后减D先减后增 解析:
第2课时导数与函数的极值最值练习含解析Tag内容描述:
1、第1课时 导数与函数的单调性基础达标1函数f(x)exex,xR的单调递增区间是()A(0,)B(,0) C(,1)D(1,)解析:选D.由题意知,f(x)exe,令f(x)0,解得x1,故选D.2函数f(x)1xsin x在(0,2)上的单调情况是()A增函数B减函数C先增后减D先减后增解析:选A.在(0,2)上有f(x)1cos x0恒成立,所以f(x)在(0,2)上单调递增3(2019台州市高三期末质量评估)已知函数f(x)ax3ax2x(aR),下列选项中不可能是函数f(x)图象的是()解析:选D.因f(x)ax2ax1,故当a0时,判别式a24a0,其图象是答案C中的那种情形;当a0时,判别式a24a0,其图象是答案B中的那种情形;判。
2、第3课时 导数与函数的综合问题基础达标1(2019台州市高考模拟)已知yf(x)为R上的连续可导函数,且xf(x)f(x)0,则函数g(x)xf(x)1(x0)的零点个数为()A0B1C0或1D无数个解析:选A.因为g(x)xf(x)1(x0),g(x)xf(x)f(x)0,所以g(x)在(0,)上单调递增,因为g(0)1,yf(x)为R上的连续可导函数,所以g(x)为(0,)上的连续可导函数,g(x)g(0)1,所以g(x)在(0,)上无零点2(2019丽水模拟)设函数f(x)ax33x1(xR),若对于任意x1,1,都有f(x)0成立,则实数a的值为_解析:(构造法)若x0,则不论a取何值,f(x)0显然成立;当x0时,即x(0,1时,f(x)ax33x10可化为a.。
3、A 级 基础巩固一、选择题1函数 y cos x,x (0,2),其单调性是( )23A在(0,) 上是增函数,在 ,2)上是减函数B在 , 上是增函数,在 上是减函数(0, 2 32, 2) 2, 32)C在 ,2)上是增函数,在(0,)上是减函数D在 上是增函数,在 , 上是减函数2, 32 (0, 2 32, 2)解析:y cos x 在(0,)上是增函数,在,2) 上是减函数23答案:A2ysin x|sin x| 的值域是( )A1,0 B0,1 C1,1 D2,0解析:y 因此函数的值域为2,00,0 sin x 1,2sin x, 1 sin x0)在区间 上单调递减,则 的取值范围是( )3, 2A0 B023 32C. 3 D. 323 32解析:令 2k x 2k ,k 。
4、第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当22时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求已知函数的极值例2(2018通辽质检)已知函数f(x)x1(aR,e为自然对数的底数),求函数f(x)的。
5、第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是_(填序号)函数f(x)有极大值f(2)和极小值f(1);函数f(x)有极大值f(2)和极小值f(1);函数f(x)有极大值f(2)和极小值f(2);函数f(x)有极大值f(2)和极小值f(2)答案解析由题图可知,当x0;当22时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求已知函数的极值例2设函数f(x)ln(x1)a(x2x),其中aR.讨论函数f(x)极值点的个数,。
6、第 2 课时 导数与函数的极值、最值题型一 用导数求解函数极值问题命题点 1 根据函数图象判断极值例 1 设 f(x)是一个三次函数,f ( x)为其导函数,如图所示的是 yxf( x)的图象的一部分,则 f(x)的极大值与极小值分别是( )Af(2) 与 f(2) Bf (1)与 f(1)Cf(2) 与 f(2) Df (1)与 f(1)答案 A解析 由图象知,当 x0;当22 时,f(x)0.所以 f(x)在区间(,2)上为增函数,在区 间(2,2) 上为减函数,在区间(2,)上为增函数,所以 f(x)的极大值与极小值分别是 f(2)与 f(2)命题点 2 求函数的极值例 2 设函数 f(x)ln(x1)a( x2x),其中 aR .讨论函数 f(x)极。
7、第2课时 导数与函数的极值、最值基础达标1(2019宁波质检)下列四个函数中,在x0处取得极值的函数是()yx3;yx21;y|x|;y2x.ABCD解析:选D.中,y3x20恒成立,所以函数在R上递增,无极值点;中y2x,当x0时函数单调递增,当x0时函数单调递减,且y|x00,符合题意;中结合该函数图象可知当x0时函数单调递增,当x0时函数单调递减,且y|x00,符合题意;中,由函数的图象知其在R上递增,无极值点,故选D.2函数y在0,2上的最大值是()ABC0D解析:选A.易知y,x0,2,令y0,得0x1,所以函数y在0,1上单调递增,在(1,2上单调递减,所以y在0,2上的最大。
8、第第 2 课时课时 导数与函数的极值导数与函数的极值、最值最值 题型一题型一 用导数求解函数极值问题用导数求解函数极值问题 命题点 1 根据函数图象判断极值 典例 设函数 f(x)在 R 上可导,其导函数为 f(x),且函数 y(1x)f(x)的图象如图所示, 则下列结论中一定成立的是( ) A函数 f(x)有极大值 f(2)和极小值 f(1) B函数 f(x)有极大值 f(2)和极小值 f(1) C函数 f(x)有极大值 f(2)和极小值 f(2) D函数 f(x)有极大值 f(2)和极小值 f(2) 答案 D 解析 由题图可知,当 x0; 当20. 由此可以得到函数 f(x)在 x2 处取得极大值, 在 x2 处取得极小值。