欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

第2课时 异面直线

第2课时两条直线垂直的条件 学习目标1.掌握两条直线垂直的条件.2.会利用两条直线的垂直关系,求参数或直线方程.3.能解决一些简单的对称问题 知识点两条直线垂直的条件 对坐标平面内的任意两条直线l1:A1xB1yC10和l2:A2xB2yC20,有l1l2A1A2B1B20. 如果B1B20,则l1

第2课时 异面直线Tag内容描述:

1、第2课时两条直线垂直的条件学习目标1.掌握两条直线垂直的条件.2.会利用两条直线的垂直关系,求参数或直线方程.3.能解决一些简单的对称问题知识点两条直线垂直的条件对坐标平面内的任意两条直线l1:A1xB1yC10和l2:A2xB2yC20,有l1l2A1A2B1B20.如果B1B20,则l1的斜率k1,l2的斜率k2.又可以得出l1l2k1k21.1如果两条直线l1与l2垂直,则它们的斜率之积一定为1.()2已知直线l1:A1xB1yC10;l2:A2xB2yC20,(A1,B1,C1,A2,B2,C2为常数),若直线l1l2,则A1A2B1B20.()3若点A,B关于直线l:ykxb(k0)对称,则直线AB的斜率等于,且线段AB的中点在。

2、人教版 数学 六年级 下册 负数的实际应用负数的实际应用 负数负数 1 1 复习导入复习导入 正正 数数 负负 数数 +4 +5 49 82 读出下面各数,并按要求填一填。读出下面各数,并按要求填一填。 0 -20.5 + 1 2 -10 -8 复习导入复习导入 2.如果25%表示增产25%,那么16%就表示 ( )。 减产16% 3.某日上海晚上10时的温度比中午12时的温 度下降了。

3、4.2 直线、射线、线段第 2 课时 线段的大小比较第 3 课时 线段的性质情景导入 置疑导入 归纳导入 复习导入 类比导入 悬念激趣情景导入 大家认识下面的两位名人吗?图 4235那么,我们现在来比较一下他们的身高(学生七嘴八舌,发表见解:姚明更高一些) 那要是让潘长江老师站到三楼上,姚明站在地面上呢?(这样就没有可比性)如果我们用线段来表示人的身高,又如何比较线段的长短呢?从而引入课题说明与建议 说明:利用名人,把现实生活中的问题转化为数学中的探索问题,激发学生的学习兴趣,在具体问题中设问,在解答问题 中形成认知冲突,激。

4、第第 2 2 课时课时 直线与圆的方程的应用直线与圆的方程的应用 1yx的图象和圆 x2y24 在 x 轴上方所围成的图形的面积是 A.4 B.34 C.32 D 答案 D 解析 数形结合,所求面积是圆 x2y24 面积的14. 2已知圆 。

5、第2课时两条直线垂直的条件一、选择题1已知直线l1的斜率为a,l2l1,则l2的斜率为()A. BCa D或不存在考点题点答案D解析当a0时,由k1k21知,k2,当a0时,l2的斜率不存在2点A关于y轴的对称点A的坐标为()A. B.C. D.答案D3以A(2,1),B(4,3)为端点的线段的垂直平分线的方程是()A3xy50 B3xy50C3xy50 D3xy50答案C解析AB的中点坐标为(1,2),kAB,AB的垂直平分线的斜率为3,所求直线的方程为y23(x1),即3xy50.4已知M(0,1),点N在直线xy10上,且直线MN与直线x2y30垂直,则点N的坐标是()A(2,3) B(2,1)C(2,3) D(2,1)答案C解析设点N的坐标为(x,x1),。

6、第2课时直线与平面平行的性质学习目标1.理解直线与平面平行的性质定理.2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.知识点直线与平面平行的性质定理表示定理图形文字符号直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ab一、线面平行的性质定理的应用命题角度1用线面平行的性质定理证明线线平行例1如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.证。

7、第第 2 课时课时 直线的极坐标方程直线的极坐标方程 学习目标 1.掌握直线的极坐标方程.2.能熟练进行曲线的极坐标方程和直角坐标方程间的 互化.3.能用极坐标方程解决相关问题 知识点 直线的极坐标方程 思考 1 直线 l 的极坐标方程 f(,)0 应该有什么要求? 答案 直线 l 上任意一点 M 至少有一个极坐标适合方程 f(,)0; 以 f(,)0 的解为坐标的点都在直线 l 上 思考 2 。

8、第2课时两条直线的垂直学习目标1.理解并掌握两条直线垂直的条件.2.能根据已知条件判断两条直线垂直.3.会利用两直线垂直求参数及直线方程.知识点两条直线垂直的判断图示对应关系l1l2(两直线斜率都存在)k1k21l1的斜率不存在,l2的斜率为0l1l2一、两条直线垂直关系的判定例1判断下列各组中的直线l1与l2是否垂直:(1)l1经过点A(1,2),B(1,2),l2经过点M(2,1),N(2,1);(2)l1的斜率为10,l2经过点A(10,2),B(20,3);(3)l1经过点A(3,4),B(3,100),l2经过点M(10,40),N(10,40).解(1)直线l1的斜率k12,直线l2的斜率k2,k1k21,故l1与l2不垂直.(。

9、第2课时直线的点斜式方程学习目标 1掌握直线的点斜式方程和直线的斜截式方程2结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义3会根据斜截式方程判断两直线的位置关系知识链接下列说法中,若两条不重合的直线平行,则它们的斜率相等;若两直线的斜率相等,则两直线平行;若两直线垂直,则其斜率之积为1;若两直线的斜率之积为1,则它们互相垂直正确的有_答案预习导引1直线的点斜式方程名称已知条件示意图方程使用范围点斜式点P(x0,y0)和斜率kyy0k(xx0)斜率存在的直线2.直线l在坐标轴上的截距(1)直线在y轴上的截距:。

10、第2课时直线的极坐标方程,第一讲三简单曲线的极坐标方程,学习目标 1.掌握直线的极坐标方程. 2.能熟练进行曲线的极坐标方程和直角坐标方程间的互化. 3.能用极坐标方程解决相关问题.,问题导学,达标检测,题型探究,内容索引,问题导学,思考1直线l的极坐标方程f(,)0应该有什么要求?,知识点直线的极坐标方程,答案直线l上任意一点M至少有一个极坐标适合方程f(,)0; 以f(,)0的解为。

11、第2课时直线与平面平行学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题知识点一直线与平面的位置关系直线与平面的位置关系定义图形语言符号语言直线在平面内有无数个公共点a直线与平面相交有且只有一个公共点aA直线与平面平行没有公共点a知识点二直线与平面平行的判定直线与平面平行的判定定理文字语言符号表示图形表示如果不在一个平面内一条直线和平面内的一条直线平行,那么这。

12、4.2 直线、射线、线段一、选择题1. 下列说法错误的是( )A. 平面内过一点有且只有一条直线与已知直线垂直 B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线 D. 过一点有且只有一条直线与已知直线平行2平面上的三条直线最多可将平面分成( )部分A 3 B6 C 7 D93如果 A BC 三点在同一直线上,且线段 AB=4CM,BC=2CM,那么 AC 两点之间的距离为( )A 2CM B 6CM C 2 或 6CM D 无法确定4下列说法正确的是( )A延长直线 AB 到 C; B延长射线 OA 到 C; C平角是一条直线; D延长线段 AB 到 C5如果你想将一根细木条固定在墙上,至。

13、第2课时点到直线的距离公式一、选择题1.点(1,1)到直线y1的距离是()A. B.C.3 D.2考点点到直线的距离题点求点到直线的距离答案D解析d2,故选D.2.原点到直线x2y50的距离为()A.1 B. C.2 D.答案D解析d.3.已知直线l1:xy10,l2:xy10,则l1与l2之间的距离为()A.1 B. C. D.2答案B解析d.4.已知直线3xmy30与6x4y10互相平行,则它们之间的距离是()A.4 B. C. D.答案D解析3xmy30与6x4y10平行,m2,化6x4y10为3x2y0,d.5.已知点M(1,4)到直线l:mxy10的距离为3,则实数m等于()A.0 B. C.3 D.0或答案D解析点M到直线的距离d3,m0或.6.两平行直线分别经过点。

14、第第 2 课时课时 直线与椭圆直线与椭圆 一、选择题 1.若点 P(a,1)在椭圆x 2 2 y2 31 的外部,则 a 的取值范围为( ) A. 2 3 3 ,2 3 3 B. ,2 3 3 2 3 3 , C. 4 3, D. ,4 3 考点 点与椭圆的位置关系 题点 由点与椭圆的位置关系求参数 答案 B 解析 因为点 P 在椭圆x 2 2 y2 31 的外部, 所以a 2 2 1 2 3 1,解得 a2 3 3 或 a0)相交于 A,B 两点,若椭圆的离心率为 2 2 ,焦 距为 2,则线段 AB 的长是( ) A.2 2 3 B.2 C. 2 D.4 2 3 考点 直线与椭圆的位置关系 题点 直线与椭圆相交求弦长 答案 D 解析 由题意得椭圆方程为x 2 2y 21, 联立。

15、荆关五小六年级数学下册教案 课题 在直线上表示数在直线上表示数 课型 讲授课 单元课时 2 教学 目标 知识与技能 1. 在数轴上表示正数、0 和负数,初步渗透数轴的概念,体会数轴上正、负 数的排列规律。 过程与方法 2. 提高学生应用数学的能力,使学生感受数学和生活的密切联系,激发学 生学习数学的兴趣。 情感、态度、 价值观 3. 增加学生的自然知识,产生热爱自然的情感 教学重点 重点:体会在数。

16、第第 2 课时课时 直线与椭圆直线与椭圆 学习目标 1.进一步巩固椭圆的简单性质.2.掌握点与椭圆、直线与椭圆的位置关系等知识.3. 会判断直线与椭圆的位置关系. 知识点一 点与椭圆的位置关系 点 P(x0,y0)与椭圆x 2 a2 y2 b21(ab0)的位置关系: 点 P 在椭圆上x 2 0 a2 y20 b21; 点 P 在椭圆内部x 2 0 a2 y20 b21. 知识点二 直线与椭圆的位置关系 直线 ykxm 与椭圆x 2 a2 y2 b21(ab0)的位置关系的判断方法:联立 ykxm, x2 a2 y2 b21. 消去 y 得到一个关于 x 的一元二次方程. 直线与椭圆的位置关系、对应一元二次方程解的个数及 的取值的关系。

17、第2课时直线与平面平行一、选择题1若直线a,b是异面直线,a,则b与平面的位置关系是()A平行 B相交Cb D平行或相交答案D解析a,b异面,且a,b,b与平行或相交2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH平面SCD,则()AGHSABGHSDCGHSCD以上均有可能答案B解析因为GH平面SCD,GH平面SBD,平面SBD平面SCDSD,所以GHSD,显然GH与SA,SC均不平行,故选B.3.P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:OMPD;OM平面PCD;OM平面PDA;OM平面PBA;OM平面PBC.其中正确的个数为()A1 B2 C3 D4答案C解。

18、第2课时 直线与椭圆,第三章 1.2 椭圆的简单性质,学习目标,XUEXIMUBIAO,1.进一步巩固椭圆的简单性质. 2.掌握点与椭圆、直线与椭圆的位置关系等知识. 3.会判断直线与椭圆的位置关系.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 点与椭圆的位置关系,知识点二 直线与椭圆的位置关系,消去y得到一个关于x的一元二次方程. 直线与椭圆的位置关系、对应一元二次方程解的个数及的取值的关系如表所示.,两,一,无,知识点三 弦长公式 设直线l:ykxm(k0,m为常数)与椭圆 相交,两个交点为A(x1,y1),B(x2,y2),则。

19、第2课时 异面直线一、选择题1.长方体的一条体对角线与长方体的棱所组成的异面直线有()A.2对 B.3对 C.6对 D.12对答案C解析如图所示,在长方体中没有与体对角线平行的棱,要求与长方体体对角线AC1异面的棱所在的直线,只要去掉与AC1相交的六条棱,其余的都与体对角线异面,与AC1异面的棱有BB1,A1D1,A1B1,BC,CD,DD1,长方体的一条体对角线与长方体的棱所组成的异面直线有6对,故选C.2.设P是直线l外一定点,过点P且与l成30角的异面直线()A.有无数条 B.有两条C.至多有两条 D.有一条答案A解析如图所示,过点P作直线ll,以l为轴,与l成30角。

20、第2课时 异面直线学习目标1.理解异面直线的定义及判定,能判断两条直线是不是异面直线.2.理解异面直线所成的角的概念.知识点一异面直线的判断方法内容定义法不同在任何一个平面内的两条直线叫做异面直线定理法过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线反证法判定两条直线既不平行也不相交,那么这两条直线就是异面直线知识点二异面直线所成的角定义前提两条异面直线a,b作法经过空间任意一点O,作直线aa,bb结论我们把a和b所成的锐角(或直角)叫做异面直线a,b所成的角范围记异面直线a与b所成的角为,则090。

【第2课时 异面直线】相关PPT文档
第1单元负数(第2课时)在直线上表示数ppt课件
1.3(第2课时)直线的极坐标方程ppt课件
3.1.2 第2课时 直线与椭圆ppt课件
【第2课时 异面直线】相关DOC文档
2.2.3 第2课时 两条直线垂直的条件 学案(含答案)
4.2直线、射线、线段(第2课时)线段的大小比较 备课素材
2.5.1(第2课时)直线与圆的方程的应用 课时作业(含答案)
2.2.3 第2课时 两条直线垂直的条件 课时作业(含答案)
第2课时 直线与平面平行的性质 学案(含答案)
1.3(第2课时)直线的极坐标方程 学案(含答案)
第2课时 两条直线的垂直 学案(含答案)
7.2.4直线的斜率(第2课时)直线的点斜式方程 学案(含答案)
1.2.2 第2课时 直线与平面平行 学案(含答案)
4.2直线、射线、线段(第2课时)线段的大小比较【课时训练】
1.5 第2课时 点到直线的距离公式 课时作业(含答案)
3.1.2 第2课时 直线与椭圆 课时对点练(含答案)
教案-第2课时 在直线上表示数
3.1.2 第2课时 直线与椭圆 学案(含答案)
1.2.2 第2课时 直线与平面平行 课时作业(含答案)
2019苏教版高中数学必修二《第2课时 异面直线》课时对点练(含答案)
第2课时 异面直线 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开