欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

第2课时 直线与平面平行的性质 学案含答案

第第 2 2 课时课时 夹角问题夹角问题 学习目标 1.会用向量法求线线、线面、面面夹角.2.能正确区分向量夹角与所求线线角、线 面角、面面角的关系 知识点一 两个平面的夹角 平面 与平面 的夹角:平面 与平面 相交,形成四个二面角,我们把这四个二面角中不 大于 90 的二面角称为平面 与平面 的夹

第2课时 直线与平面平行的性质 学案含答案Tag内容描述:

1、第第 2 2 课时课时 夹角问题夹角问题 学习目标 1.会用向量法求线线、线面、面面夹角.2.能正确区分向量夹角与所求线线角、线 面角、面面角的关系 知识点一 两个平面的夹角 平面 与平面 的夹角:平面 与平面 相交,形成四个二面角,我们把这四个二面角中不 大于 90 的二面角称为平面 与平面 的夹角 知识点二 空间角的向量法解法 角的分类 向量求法 范围 两条异面直 线所成的角 设两异面直线 。

2、第2课时正切函数的图象与性质学习目标1.会求正切函数ytan(x)的周期.2.掌握正切函数ytan x的奇偶性,并会判断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法知识点一正切函数的图象1正切函数的图象叫正切曲线,图象如下:2正切函数的图象特征正切曲线是被相互平行的直线xk,kZ所隔开的无穷多支曲线组成的知识点二正切函数的性质函数ytan x的图象与性质见下表:解析式ytan x图象定义域值域R周期奇偶性奇单调性在开区间(kZ)上都是单调增函数1函数ytan x在其定义域上是增函数()提示ytan x在开区间(kZ)上是增函数,但在其定。

3、第2课时圆与圆的位置关系学习目标 1掌握圆与圆的位置关系及判定方法2能利用直线与圆的位置关系解决简单的实际问题3体会用代数方法处理几何问题的思想知识链接1判断直线与圆的位置关系的两种方法为代数法、几何法2两圆的位置关系有外离、外切、相交、内切、内含预习导引1圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断一元二。

4、第2课时直观图与中心投影、平行投影学习目标 1用斜二测画法画水平放置的平面图形的直观图2用斜二测画法画常见的柱、锥、台以及简单组合体的直观图3了解中心投影和平行投影知识链接1一般地,在一个几何体的三视图中,左视图与正视图高一样;俯视图与正视图长一样;左视图与俯视图宽一样2梯形的面积S(ab)h(其中a,b为两底长,h为高)预习导引1用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们分别画成对应的x轴与y轴,其交点为O,且使xOy45(或135),它们确定的。

5、第2课时点到直线的距离公式学习目标1.了解点到直线距离公式的推导方法.2.掌握点到直线距离公式,并能灵活应用于求平行线间的距离等问题.知识点一点到直线的距离1.定义:点到直线的垂线段的长度.2.图示:3.公式:d.思考点到直线的距离公式对于A0或B0时的直线是否仍然适用?答案仍然适用,当A0,B0时,直线l的方程为ByC0,即y,d,适合公式.当B0,A0时,直线l的方程为AxC0,x,d,适合公式.知识点二两条平行直线间的距离1.定义:夹在两平行线间的公垂线段的长.2.图示:3.求法:转化为点到直线的距离.4.公式:两条平行直线l1:AxByC10与l2:A。

6、第3课时直线与平面垂直的判定和性质一、选择题1.已知PA矩形ABCD,下列结论中,不正确的是()A.PBBC B.PDCDC.PDBD D.PABD答案C解析依题意画出几何图形,如图,显然PDBD不正确;BC平面PAB,则PBBC;CD平面PAD,则PDCD;PA平面ABCD,则PABD.2.ABC所在的平面为,直线lAB,lAC,直线mBC,mAC,l,m为两条不重合的直线,则直线l,m的位置关系是()A.平行 B.垂直C.相交 D.以上都有可能答案A解析直线lAB,lAC,且ABACA,l平面,同理直线m平面.由线面垂直的性质定理可得lm.3.已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相。

7、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质一、选择题1.下列四个说法中正确的是()A.平面内有无数个点到平面的距离相等,则B.a,b,且ab(,分别表示平面,a,b表示直线),则C.平面内一个三角形三边分别平行于平面内的一个三角形的三条边,则D.平面内的一个平行四边形的两边与平面内的一个平行四边形的两边对应平行,则答案C解析由面面平行的判定定理知C正确.2.如图所示,设E,F,E1,F1分别是长方体ABCDA1B1C1D1的棱AB,CD,A1B1,C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A解。

8、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定一、选择题1.下列条件中能得出直线m与平面平行的是()A.直线m与平面内所有直线平行B.直线m与平面内无数条直线平行C.直线m与平面没有公共点D.直线m与平面内的一条直线平行答案C解析A,本身说法错误;B,当直线m在平面内时,m与不平行;C,能推出m与平行;D,当直线m在平面内时,m与不平行.故选C.2.如果平面外有两点A,B,它们到平面的距离都是a,则直线AB和平面的位置关系一定是()A.平行 B.相交C.平行或相交 D.AB答案C解析结合图形可知选项C正确.3.若直线a平面,直线b平面,则a与b的位。

9、第2课时平面与平面平行基础过关1.a,b,则a与b的位置关系是()A.平行B.异面C.相交D.平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交.2.下列说法中正确的是()A.如果两个平面、只有一条公共直线a,就说平面、相交,并记作aB.两平面、有一个公共点A,就说、相交于过A点的任意一条直线C.两平面、有一个公共点A,就说、相交于A点,并记作AD.两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段.3.平面内有不共线的三点。

10、第二课时第二课时 直线与平面平行的性质直线与平面平行的性质 基础达标 一选择题 1.如图, 已知 S 为四边形 ABCD 外一点, 点 G, H 分别为 SB, BD 上的点, 若 GH平面 SCD,则 A.GHSA B.GHSD C.GH。

11、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。

12、第2课时 直线与平面平行的性质,第1章 1.2.3 直线与平面的位置关系,学习目标 1.理解直线与平面平行的性质定理. 2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与平面平行的性质定理,思考1 如图,直线l平面,直线a平面,直线l与直线a一定平行吗?为什么?,答案 不一定,因为还可能是异面直线.,思考2 如图,直线a平面,直线a平面,平面平面直线b,满足以上条件的平面有多少个?直线a,b有什么位置关系?,答案 无数个,ab.,梳理,a,b,平行,思考辨析 判断正误。

13、第2课时直线与平面平行的性质一、选择题1.若直线l平面,则过l作一组平面与相交,记所得的交线分别为a,b,c,那么这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案A解析因为直线l平面,所以根据直线与平面平行的性质知la,lb,lc,所以abc,故选A.2.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EHFG,则EH与BD的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A3.如图,在三棱柱ABCA1B1C1中,AM2MA1,BN2NB1,过MN作一平面交底面三角形ABC的边BC,A。

14、第2课时平面与平面平行学习目标 1理解平面与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理、性质定理,并知道其地位和作用3能运用平面与平面平行的判定定理、性质定理证明一些空间面面关系的简单问题知识链接1直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行2直线和平面平行的性质定理:一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行预习导引面面平行的判定定理、性质定理定理表示面面平行的判定定理面面。

15、第2课时直线与平面平行一、选择题1若直线a,b是异面直线,a,则b与平面的位置关系是()A平行 B相交Cb D平行或相交答案D解析a,b异面,且a,b,b与平行或相交2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH平面SCD,则()AGHSABGHSDCGHSCD以上均有可能答案B解析因为GH平面SCD,GH平面SBD,平面SBD平面SCDSD,所以GHSD,显然GH与SA,SC均不平行,故选B.3.P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:OMPD;OM平面PCD;OM平面PDA;OM平面PBA;OM平面PBC.其中正确的个数为()A1 B2 C3 D4答案C解。

16、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质学习目标1.了解平面与平面的位置关系,掌握面面平行的判定定理、性质定理.2.会利用“线线平行”“线面平行”及“面面平行”相互之间的转化,来证明“线线平行”“线面平行”及“面面平行”等问题.3.了解两个平面间的距离的概念.知识点一两个平面的位置关系位置关系图形表示符号表示公共点平面与平面平行没有公共点平面与平面相交l有一条公共直线知识点二平面与平面平行的判定定理表示定理图形文字符号两个平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么。

17、62.2平行关系第1课时直线与平面平行学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题预习导引1直线与平面平行的定义ll2线面平行的判定定理、性质定理定理表示线面平行的判定定理线面平行的性质定理文字叙述平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行符号。

18、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.掌握空间中直线与平面平行的判定定理.知识点一直线与平面的位置关系位置关系直线a在平面内直线a在平面外直线a与平面相交直线a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示aaAa图形表示提示:利用公共点的个数可以判断直线与平面的位置关系.知识点二直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直。

19、第2课时直线与平面平行学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题知识点一直线与平面的位置关系直线与平面的位置关系定义图形语言符号语言直线在平面内有无数个公共点a直线与平面相交有且只有一个公共点aA直线与平面平行没有公共点a知识点二直线与平面平行的判定直线与平面平行的判定定理文字语言符号表示图形表示如果不在一个平面内一条直线和平面内的一条直线平行,那么这。

20、第2课时直线与平面平行的性质学习目标1.理解直线与平面平行的性质定理.2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.知识点直线与平面平行的性质定理表示定理图形文字符号直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ab一、线面平行的性质定理的应用命题角度1用线面平行的性质定理证明线线平行例1如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.证。

【第2课时 直线与平面平行的性质 学案含答案】相关PPT文档
苏教版高中数学必修二课件:1.2.3 第2课时 直线与平面平行的性质
【第2课时 直线与平面平行的性质 学案含答案】相关DOC文档
《1.2.2空间中的平行关系(第2课时)平面与平面平行》课后作业(含答案)
8.5.2(第二课时)直线与平面平行的性质 课后作业(含答案)
6.2.2平行关系(第2课时)平面与平面平行 学案(含答案)
1.2.2 第2课时 直线与平面平行 课时作业(含答案)
第1课时 两平面平行的判定与性质 学案(含答案)
6.2.2平行关系(第1课时)直线与平面平行 学案(含答案)
第1课时 直线与平面平行的判定 学案(含答案)
1.2.2 第2课时 直线与平面平行 学案(含答案)
第2课时 直线与平面平行的性质 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开