欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

第2章推理与证明 章末复习学案含答案

第第 2 2 章章 常用逻辑用语常用逻辑用语 章末复习课章末复习课 一充分条件必要条件与充要条件 1若 pq,且 qp,则 p 是 q 的充分不必要条件,同时 q 是 p 的必要不充分条件; 若 pq,则 p 是 q 的充要条件,同时 q ,第第 4 4 章章 指数与对数指数与对数 章末复习课章末复

第2章推理与证明 章末复习学案含答案Tag内容描述:

1、第第 2 2 章章 常用逻辑用语常用逻辑用语 章末复习课章末复习课 一充分条件必要条件与充要条件 1若 pq,且 qp,则 p 是 q 的充分不必要条件,同时 q 是 p 的必要不充分条件; 若 pq,则 p 是 q 的充要条件,同时 q 。

2、第第 4 4 章章 指数与对数指数与对数 章末复习课章末复习课 一根式的化简或求值 1根式的化简与求值要使用根式的运算性质: 1当 n 为任意正整数时,nana; 2当 n 为奇数时,nana; 当 n 为偶数时,nana a,a0, a,。

3、章末复习一、选择题1“双曲线的方程为x2y21”是“双曲线的渐近线方程为yx”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分又不必要条件答案A解析双曲线x2y21的渐近线方程为yx,而渐近线方程为yx的双曲线为x2y2(0),故选A.2如图,正方形ABCD和正方形DEFG的边长分别为2,a(a2),原点O为AD的中点,抛物线y22px(p0)经过C,F两点,则a等于()A.1 B.2C22 D22答案C解析由题意知C(1,2),F(1a,a),解得a22(负值舍去)故选C.3已知抛物线yx2的焦点与椭圆1的一个焦点重合,则m等于()A. B. C. D.答案A解析yx2的焦点坐标为,由题意可得m2.4已。

4、章末复习课网络构建核心归纳1指数和对数(1)分数指数的定义:a(a0,m,nN,m2),a(a0,m,nN,m2)(2)如同减法是加法的逆运算,除法是乘法的逆运算一样,对数运算是指数运算的逆运算abNlogaNb(a0,a1,N0)由此可得到对数恒等式:alogaNN,blogaab.(3)对数换底公式logaN(a0,b0,a1,b1,N0)的意义在于把各个不同底数的对数换成相同底数的对数,这样,一可以进行换算,二可以通过对数表求值(4)指数和对数的运算法则有:amanamn,logaMlogaNloga(MN),(am)namn,logaMnnlogaM,amanamn,logaMlogaNloga.(aR,m,nR)(M,NR,a0,a1)2指数函数、。

5、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫做复平面x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

6、章末整合章末整合(二二)(教师独具教师独具) 本章网络构建 _;_;_;_;_;_。 答案 水和无机盐的平衡 体温的平衡 免疫失调引起的疾病 神经调节与稳态 激素调节转导信号的分子机制 生长素 规律方法整合 方法一 巧解内环境示意图 典例 1 如图是人体某组织内的各种结构示意图,A、B、C、D 表示结构,表示液 体。下列有关叙述错误的是( ) A可进入 A、B、C B组成体液,其中构成内环境 C尿素分子不能由进入 DB 产生的废物和 CO2先后经过和,最终被排出体外 答案 C 解析 图中分别为淋巴液、细胞内液、组织液、血浆,A、B、C、D 分别为毛细淋 巴管。

7、章末复习考点一函数图象的画法及应用例1(2018盐城高一检测)已知奇函数f(x)(1)求实数m的值,并在给出的平面直角坐标系中画出函数f(x)的图象;(2)若函数f(x)在区间1,a2上是增函数,结合函数f(x)的图象,求实数a的取值范围;(3)结合图象,求函数f(x)在区间2,2上的最大值和最小值解(1)当x0,则f(x)(x)22(x)x22x.又函数f(x)为奇函数,所以f(x)f(x)所以f(x)f(x)(x22x)x22x.又当x0时,f(x)x2mx,所以x22xx2mx,所以m2.函数f(x)的图象如图所示(2)由(1)知f(x)由图象可知,函数f(x)在区间1,1上是增函数要使f(x)在1,a2上是增函数,需有解得1a3,即。

8、章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1下列选项中,与其他三个选项所蕴含的数学推理不同的是()A独脚难行,孤掌难鸣B前人栽树,后人乘凉C物以类聚,人以群分D飘风不终朝,骤雨不终日2已知在ABC中,A30,B60,求证:ab.证明:A30,B60,AB,ab,画线部分是演绎推理的()A大前提 B小前提C结论 D三段论3已知2,3,4,若a(a,t均为正实数),类比以上等式,可推测a,t的值,则ta等于()A41 B51 C55 D714用反证法证明命题“是无理数”时,假设正确的是()A假设是有理数B假设是有理数C假设或是有理。

9、第第 2 2 章章 常用逻辑用语常用逻辑用语 章末复习课章末复习课 一、充分条件、必要条件与充要条件 1若 pq,且 qp,则 p 是 q 的充分不必要条件,同时 q 是 p 的必要不充分条件; 若 pq,则 p 是 q 的充要条件,同时 q 是 p 的充要条件 2掌握充要条件的判断和证明,提升逻辑推理和数学运算素养 例 1 (1)设 xR,则“x3 或 x4”的( ) A充分不必要条件 B。

10、章末复习一、网络构建二、要点归纳1向量的运算:设a(x1,y1),b(x2,y2).向量运算法则(或几何意义)坐标运算向量的线性运算加法ab(x1x2,y1y2)减法ab(x1x2,y1y2)数乘(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0a(x1,y1)向量的数量积运算ab|a|b|cos (为a与b的夹角)规定0a0,数量积的几何意义是a的模与b在a方向上的投影的积abx1x2y1y22.两个定理(1)平面向量基本定理定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.基底:把不共线。

11、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1观察下列各等式:2,2,2,2,依照以上各式成立的规律,得到一般性的等式为()A.2B.2C.2D.2考点题点答案A解析观察分子中26537110(2)8,显然A成立2不等式ab与同时成立的充要条件为()Aab0 Ba0bC.0考点分析法及应用题点寻找结论成立的充分条件答案B解析a0b.3数列an中的前四项分别为2,则an与an1之间的关系为()Aan1an6 B.3Can1 Dan1考点归纳推理的应用题点归纳推理在数列中的应用答案B解析观察数列an的各项可知,数列是首项为,公差为3的等差数列,。

12、章末复习学习目标1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识.2.熟练掌握解决等差数列、等比数列问题的基本技能.3.依托等差数列、等比数列解决一般数列的常见通项、求和等问题1等差数列和等比数列的基本概念与公式等差数列等比数列定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表。

13、章末复习学习目标1.掌握椭圆、双曲线、抛物线的定义及其应用,会用定义求标准方程.2.掌握椭圆、双曲线、抛物线的标准方程及其求法.3.掌握椭圆、双曲线、抛物线的几何性质,会利用几何性质解决相关问题.4.掌握简单的直线与圆锥曲线位置关系问题的解决方法1椭圆、双曲线、抛物线的定义、标准方程、几何性质椭圆双曲线抛物线定义平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹平面内与两个定点F1,F2距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹标准方。

14、章末复习一、选择题1如图所示的是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()考点归纳推理的应用题点归纳推理在图形中的应用答案A解析从所给三个图形中,可以看出,三个黑色三角形在进行顺时针旋转,每次旋转都是隔一格,故选A.2若abCbaD.考点分析法及应用题点分析法解决不等式问题答案C解析取a2,b1,验证可知C正确3我们把1,4,9,16,25,这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是()An(n1) Bn(n1)C(n1)2 Dn2考点归纳推理的。

15、第2章 推理与证明 章末复习 学习目标1.整合本章知识要点.2.进一步理解合情推理与演绎推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题 1合情推理 (1)归纳推理:由部分到整体、由个别到一般的推理 (2)类比推理:由特殊到特殊的推理 (3)合情推理:合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某。

16、章末复习学习目标1.整合本章知识要点.2.进一步理解归纳推理与类比推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题1归纳与类比(1)归纳推理:由部分到整体、由个别到一般的推理(2)类比推理:由特殊到特殊的推理(3)合情推理:合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式2综合法和分析法(1)综合法是从已知条件推出结论的证明方法;(2)分析法是从结论追溯到条件的证明方法3反证法反证法的关键是。

17、章末复习学习目标1.整合本章知识要点.2.进一步理解归纳推理与类比推理的概念、思维形式、应用等.3.理解演绎推理.4.进一步熟练掌握直接证明与间接证明1归纳与类比(1)归纳推理:由部分到整体、由个别到一般的推理(2)类比推理:由特殊到特殊的推理(3)合情推理:合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式2演绎推理(1)演绎推理:由一般到特殊的推理(2)“三段论”是演绎推理的一般模式,包括:大前提已知的一般原理;小前提所研究的特殊情况;结论根据一般原理。

18、章末复习一、填空题1古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,这些数叫做三角形数,因为这些数(除1外)对应的点可以排成一个正三角形,如图所示,则第n个三角形数为_答案解析观察图形可知,这些三角形数的特点是第n个三角形数是在前一个三角形数的基础上加上n,于是第n个三角形数为12n.2正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数,以上推理错误的原因是_答案小前提不正确解析由于函数f(x)sin(x21)不是正弦函数,故小前提不正确3已知2,3,4,6,a,b均为正实数,由以上规律可推测出a,b的值,则ab_.考点归。

19、第二章第二章 推理与证明推理与证明 章末复习章末复习 学习目标 1.理解合情推理与演绎推理的区别与联系,会利用归纳与类比推理进行简单的 推理.2.加深对直接证明和间接证明的认识, 会应用其解决一些简单的问题.3.进一步掌握数学 归纳法的实质与步骤,掌握用数学归纳法证明等式与不等式问题 1合情推理 (1)归纳推理:由部分到整体、由个别到一般的推理 (2)类比推理:由特殊到特殊的推理 (3)合情推理。

20、第二章第二章 推理与证明推理与证明 章末复习章末复习 学习目标 1.理解合情推理与演绎推理的区别与联系, 会利用归纳与类比推理进行简单的推 理.2.加深对直接证明和间接证明的认识,会应用其解决一些简单的问题 1合情推理 (1)归纳推理:由部分到整体、由个别到一般的推理 (2)类比推理:由特殊到特殊的推理 (3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再 进行归。

【第2章推理与证明 章末复习学案含答案】相关DOC文档
第2章 圆锥曲线与方程章末复习 课时对点练(含答案)
第2章 指数函数、对数函数和幂函数 章末复习学案(含答案)
第3章数系的扩充与复数的引入 章末复习学案(含答案)
第2章 生物个体的内环境与稳态 章末整合 学案(含答案)
第2章 函数章末复习 学案(含答案)
2020北师大版高中数学选修1-2 第三章 推理与证明 章末检测试卷(含答案)
第2章 常用逻辑用语 章末复习课 学案(含答案)
第2章 平面向量 章末复习学案(含答案)
2020北师大版高中数学选修2-2 第一章 推理与证明 章末检测试卷(含答案)
第2章数列 章末复习学案(含答案)
第2章 圆锥曲线与方程 章末复习学案(含答案)
第三章 推理与证明 章末复习课时对点练(含答案)
第2章 推理与证明 章末复习学案(苏教版高中数学选修2-2)
第一章 推理与证明 章末复习学案(含答案)
第三章 推理与证明 章末复习学案(含答案)
《第2章 推理与证明 章末复习》课时对点练(含答案)
第二章 推理与证明 章末复习学案(含答案)
第二章 推理与证明 章末复习 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开