欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

第3章 导数及其应用

,第三章 导数及其应用,第三章 导数及其应用,第1讲 变化率与导数、导数的计算,3.2导数的应用 考情考向分析考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、数列、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意识;题型以解答题为主,一般难度较大 1函

第3章 导数及其应用Tag内容描述:

1、3.2导数的应用考情考向分析考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、数列、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意识;题型以解答题为主,一般难度较大1函数的单调性在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间内单调递增;如果f(x)0,右侧f(x)0,那么f(x0)是极小值(2)求可导函数极值的步骤求f(x);求方程f(x)0的根;考查f(x)在方程f(x)0的根附近的左右两侧导数值的符号如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处。

2、第2课时 导数与函数的极值、最值,第三章 3.2 导数的应用,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,题型一 用导数求解函数极值问题,命题点1 根据函数图象判断极值 例1 设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是 A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(2) D.函数f(x)有极大值f(2)和极小值f(2),多维探究,解析 由题图可知,当x0; 当22时,f(x)0. 由此可以得到函数f(x)在x2。

3、3.2 导数的应用,第三章 导数及其应用,ZUIXINKAOGANG,最新考纲,1.结合实例,借助几何直观探索并了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 2.结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),以及在给定区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 3.会利用导数解决某些实际问题(生活中的优化问题).,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作。

4、第一课 导数及其应用核心速填1导数的概念(1)定义:函数 yf(x)在 xx 0 处的瞬时变化率 ,称为lim x 0fx0 x fx0x函数 yf( x)在 xx 0 处的导数(2)几何意义:函数 yf(x)在 xx 0 处的导数是函数图象在点(x 0,f( x0)处的切线斜率2几个常用函数的导数(1)若 yf(x) c ,则 f(x)0.(2)若 yf(x) x ,则 f(x)1.(3)若 yf(x) x 2,则 f( x)2x.(4)若 yf(x) ,则 f(x) .1x 1x2(5)若 yf(x) ,则 f(x ) .x12x3基本初等函数的导数公式(1)若 f(x)c(c 为常数),则 f(x)0.(2)若 f(x)x (Q *),则 f( x)x 1 .(3)若 f(x)sin x,则 f(x)cos _x.(4)若 f(x)cos x ,则 。

5、第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当22时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求已知函数的极值例2(2018通辽质检)已知函数f(x)x1(aR,e为自然对数的底数),求函数f(x)的。

6、第3课时 导数与函数的综合问题基础达标1(2019台州市高考模拟)已知yf(x)为R上的连续可导函数,且xf(x)f(x)0,则函数g(x)xf(x)1(x0)的零点个数为()A0B1C0或1D无数个解析:选A.因为g(x)xf(x)1(x0),g(x)xf(x)f(x)0,所以g(x)在(0,)上单调递增,因为g(0)1,yf(x)为R上的连续可导函数,所以g(x)为(0,)上的连续可导函数,g(x)g(0)1,所以g(x)在(0,)上无零点2(2019丽水模拟)设函数f(x)ax33x1(xR),若对于任意x1,1,都有f(x)0成立,则实数a的值为_解析:(构造法)若x0,则不论a取何值,f(x)0显然成立;当x0时,即x(0,1时,f(x)ax33x10可化为a.。

7、第第 1 章章 导数及其应用导数及其应用 章末复习章末复习 学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数 的求导公式, 并能够综合运用求导法则求函数的导数.3.掌握利用导数判断函数单调性的方法, 会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题 1导数的概念 (1)定义:设函数 yf(x)在区间(a,b)上有定义,x0(a,b),若 x 。

8、第一章 导数及其应用 章末复习 学习目标1.理解导数的几何意义,并能解决有关斜率、切线方程等问题.2.掌握初等函数的求导公式.3.熟练掌握利用导数判断函数单调性,会用导数求函数的极值与最值.4.掌握微积分基本定理,能利用定积分求不规则图形的面积 1函数yf(x)在点x0处的导数 (1)定义式:f(x0). (2)几何意义:曲线在点(x0,f(x0)处切线的斜率 2基本初等函数的导数公式 yf(x。

9、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.曲线ysin x在点P处的切线斜率是_.考点导数的几何意义题点求某点处切线斜率答案解析由ysin x,得ycos x,所以在点P处的切线斜率是kcos .2.函数f(x)ln xx的单调递增区间为_.考点导数的运用题点求函数单调区间答案(0,1)解析令f(x)10,解不等式即可解得x1,注意定义域为(0,).所以0x1.3.设f(x)xln x,若f(x0)2,则x0_.考点导数的运用题点求函数导数答案e解析f(x)xln x,f(x)ln xxln x1,由f(x0)2,得ln x012,x0e.4.函数f(x)(x1)2(x2)2的极大值是_。

10、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若小球自由落体的运动方程为S(t)gt2(g为常数),该小球在t1到t3的平均速度为,在t2时的瞬时速度为v2,则和v2关系为()A.v2 B.v2C.v2 D不能确定z答案C解析平均速度为2g.S(t)gt2,S(t)gt,t2时的瞬时速度为v2,v2S(2)g22g,v2,故选C.2当x在(,)上变化时,导函数f(x)的符号变化如下表:x(,1)1(1,4)4(4,)f(x)00则函数f(x)的图象的大致形状为()答案C解析从表中可知f(x)在(,1)上单调递减,在(1,4)上单调递增,在(4,)上单调递减3已知某物体运动的路。

11、3.2导数的应用最新考纲考情考向分析1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)3.会利用导数解决某些实际问题(生活中的优化问题).考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意。

12、章末复习一、选择题1已知曲线yx22x2在点M处的切线与x轴平行,则点M的坐标是()A(1,2) B(1,3)C(1,3) D(1,2)答案B解析令f(x)2x20,解得x1.又f(1)(1)22(1)23,所以M(1,3)2设函数f(x)x32x5,若对任意的x1,2,都有f(x)a,则实数a的取值范围为()A. B(,2)C. D(,2答案A解析f(x)3x2x2,令f(x)0,得3x2x20,解得x1或x,又f(1),f,f(1),f(2)7,故f(x)min,a.3已知yf(x)是奇函数,当x(0,2)时,f(x)ln xax,当x(2,0)时,f(x)的最小值为1,则a的值为()A1 B2 C. D3答案A解析由题意知,当x(0,2)时,f(x)的最大值为1.令f。

13、习题课导数的应用一、填空题1.函数yexln x的值域为_.考点利用导数研究函数的单调性、极值与最值题点利用导数研究函数的极值与最值答案2,)解析由ye(x0)知函数在上单调递减,在上单调递增,且函数连续、无上界,从而yexln x的值域为2,).2.函数y在定义域内的最大值、最小值分别是_.考点题点答案2,2解析函数的定义域为R.令y0,得x1.当x变化时,y,y随x的变化情况如下表:x(,1)1(1,1)1(1,)y00y极小值极大值当x趋近于负无穷大时,y趋近于0;当x趋近于正无穷大时,y趋近于0.由上表可知,当x1时,y取极小值也是最小值2;当x1时,y取极大值也。

14、习题课导数的应用一、选择题1函数yexln x的值域为()Ae,) B2,)C(e,) D(2,)答案B解析由ye(x0)知函数在上单调递减,在上单调递增,且函数连续、无上界,从而yexln x的值域为2,)2函数y在定义域内的最大值、最小值分别是()A2,2 B1,2 C2,1 D1,2答案A解析函数的定义域为R.令y0,得x1.当x变化时,y,y随x的变化情况如下表:x(,1)1(1,1)1(1,)y00y极小值极大值当x趋近于负无穷大时,y趋近于0;当x趋近于正无穷大时,y趋近于0.由上表可知,当x1时,y取极小值也是最小值2;当x1时,y取极大值也是最大值2.3设f(x)4x3mx2(m3)xn(m,nR)是R上的。

15、1巧用法则求导数导数的计算包括八个基本初等函数的导数公式,以及和、差、积、商的导数运算法则,它们是导数概念的深化,也是导数应用的基础,起到承上启下的作用那么在掌握和、差、积、商的导数运算法则时,要注意哪些问题?有哪些方法技巧可以应用?下面就以实例进行说明1函数和(或差)的求导法则(f(x)g(x)f(x)g(x)例1求下列函数的导数:(1)f(x)ln x;(2)yx32x3.解(1)f(x).(2)y(x3)(2x)33x22.点评记住基本初等函数的导数公式是正确求解导数的关键,此外函数和(或差)的求导法则可以推广到任意有限个可导函数和(或差)的求导2函数积的求导法。

16、章末复习学习目标1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数的求导公式,并能够综合运用求导法则求函数的导数.3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题1在xx0处的导数(1)定义:函数yf(x)在xx0处的瞬时变化率,若x无限趋近于0时,比值无限趋近于一个常数A,称函数yf(x)在xx0处可导常数A为f(x)在xx0处的导数(2)几何意义:函数yf(x)在xx0处的导数是函数图象在点(x0,f(x0)处的切线斜率(3)物理意义:瞬时速度、瞬时加速度2基本初等函数的求导公式。

17、习题课导数的应用学习目标1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用知识点一函数的单调性与其导数的关系定义在区间(a,b)内的函数yf(x)f(x)的正负f(x)的单调性f(x)0单调递增f(x)0,右侧f(x)0,那么f(x0)是极小值知识点三函数yf(x)在a,b上最大值与最小值的求法1求函数yf(x)在(a,b)内的极值2将函数yf(x)的极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值1函数yxln x在上是减函数()2若函数yaxln x在内单调递增,则a的取值范围为(2,。

【第3章 导数及其应用】相关PPT文档
【第3章 导数及其应用】相关DOC文档
2019人教A版数学选修2-2学案:第1章阶段复习课导数及其应用
第1章 导数及其应用 章末复习学案(苏教版高中数学选修2-2)
第一章 导数及其应用 章末复习学案(含答案)
2019苏教版高中数学选修1-1《第3章 导数及其应用》章末检测试卷(含答案)
苏教版高中数学选修1-1《第3章 导数及其应用》章末检测试卷(含答案)
第3章导数及其应用章末复习 课时对点练(含答案)
《第3章导数及其应用习题课:导数的应用》课时对点练(1)含答案
《第3章导数及其应用习题课:导数的应用》课时对点练(2)含答案
疑难规律方法:第3章导数及其应用 学案(含答案)
第3章 导数及其应用 章末复习学案(含答案)
第3章导数及其应用习题课:导数的应用 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开