欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

第3章 数系的扩充与复数的引入章末复习

章末检测试卷(五) (时间:120分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1若i为虚数单位,则复数z5i(34i)在复平面内对应的点所在的象限为() A第一象限 B第二象限 C第三象限 D第四象限 考点复数的乘除法运算法则 题点运算结果与点的对应 答案A 2“复数

第3章 数系的扩充与复数的引入章末复习Tag内容描述:

1、章末检测试卷(五)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若i为虚数单位,则复数z5i(34i)在复平面内对应的点所在的象限为()A第一象限 B第二象限C第三象限 D第四象限考点复数的乘除法运算法则题点运算结果与点的对应答案A2“复数z是实数”的充分不必要条件为()A|z|z BzCz2是实数 Dz是实数考点复数的概念题点复数的概念及分类答案A解析由|z|z可知z必为实数,但由z为实数不一定得出|z|z,如z2,此时|z|z,故“|z|z”是“z为实数”的充分不必要条件3已知a,bR,i是虚数单位若ai2bi,则(abi)2等于()A34i B34。

2、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1i是虚数单位,复数_.答案12i解析12i.2已知a是实数,是纯虚数,则a_.答案1解析是纯虚数,则a10,a10,解得a1.3设复数z1,z2在复平面内的对应点关于虚轴对称,z12i,则z1z2_.答案5解析z12i在复平面内对应点(2,1),又z1与z2在复平面内的对应点关于虚轴对称,则z2的对应点为(2,1),则z22i,z1z2(2i)(2i)i245.4若(xi)iy2i,x,yR,则复数xyi_.答案2i解析(xi)iy2i,xii2y2i,y1,x2,xyi2i.5设a,b为实数,若复数1i,则a,b的值分别为_答案,解析1i,。

3、第十五章 数系的扩充与复数的引入 目 录 考点帮必备知识通关 考点1 复数的有关概念 考点2 复数的四则运算 目 录 考法帮解题能力提升 考法1 复数的概念 考法2 复数的运算 考法3 复数的几何意义 考情解读 考点内容 课标 要求 考题取。

4、必考部分 第四第四章章 平面平面向量数系的扩充与复数的引入向量数系的扩充与复数的引入 第五讲 数系的扩充与复数的引入 1 知识梳理双基自测 2 考点突破互动探究 3 名师讲坛素养提升 返回导航 1 知识梳理双基自测 返回导航 高考一轮总复习。

5、章末复习课,第三章 数系的扩充与复数的引入,学习目标 1.掌握复数的有关概念及复数相等的充要条件. 2.理解复数的几何意义. 3.掌握复数的相关运算.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.复数的有关概念 (1)复数的概念:形如abi(a,bR)的数叫做复数,其中a,b分别是它的 和 .若b0,则abi为实数,若 ,则abi为虚数,若,则abi为纯虚数. (2)复数相等:abicdi (a,b,c,dR). (3)共轭复数:abi与cdi共轭 (a,b,c,dR). (4)复平面:建立直角坐标系来表示复数的平面叫做复平面. 叫做实轴, 叫做虚轴.实轴上的点都表示 ;除了原点外,。

6、二、填空题:请将答案填在题中横线上学+科网13若实数,满足,为虚数单位,则_14设为虚数单位,若复数是纯虚数,则实数_15已知为虚数单位,则化简可得_16已知为复数的共轭复数,为虚数单位,若,则在复平面内复数对应的点为_三、解答题:解答应写出文字说明、证明过程或演算步骤17已知复数,其中为虚数单位,若为实数,求实数的值18已知为虚数单位(1)若复数,求;(2)若复数z满足,求19若复数满足,为虚数单位,求的取值范围20已知复数,其中为虚数单位(1)若复数在复平面内对应的点分别为,求向量对应的复数;(2)若复数满足,求复数。

7、二、填空题:请将答案填在题中横线上13若实数,满足,为虚数单位,则_14设为虚数单位,若复数是纯虚数,则实数_15已知为虚数单位,则化简可得_16已知为复数的共轭复数,为虚数单位,若,则在复平面内复数对应的点为_三、解答题:解答应写出文字说明、证明过程或演算步骤17已知复数,其中为虚数单位,若为实数,求实数的值20已知复数,其中为虚数单位(1)若复数在复平面内对应的点分别为,求向量对应的复数;(2)若复数满足,求复数21已知是复数,与均为实数,其中为虚数单位(1)求复数;(2)若复数在复平面内对应的点位于第一象限,求。

8、第三章 数系的扩充与复数 章末复习 学习目标1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算且认识复数加减法的几何意义 1复数的有关概念 (1)复数的概念 形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数 (2)复数相等:abicdiac且bd(a,b,c,dR) (3)共轭复数:abi与c。

9、章末检测(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1复数z是实数的充分而不必要条件为_|z|z; z;z2是实数; z是实数2在复平面上,一个正方形的三个顶点对应的复数分别是12i,2i,0,则第四个顶点对应的复数为_3z1(m2m1)(m2m4)i,mR,z232i,则“m1”是“z1z2”的_条件4下面是关于复数z的四个命题:p1:|z|2;p2:z22i;p3:z的共轭复数为1i;p4:z的虚部为1.其中的真命题为_5在复平面内,O是原点,对应的复数分别为2i,32i,15i,那么对应的复数为_6i是虚数单位,若abi(a,bR),则ab的值是_7已知f(n)ini。

10、章末检测试卷(四)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若i为虚数单位,则复数z5i(34i)在复平面内对应的点所在的象限为()A第一象限 B第二象限C第三象限 D第四象限考点复数的乘除法运算法则题点运算结果与点的对应答案A2“复数z是实数”的充分不必要条件为()A|z|z BzCz2是实数 Dz是实数考点复数的概念题点复数的概念及分类答案A解析由|z|z可知z必为实数,但由z为实数不一定得出|z|z,如z2,此时|z|z,故“|z|z”是“z为实数”的充分不必要条件3已知a,bR,i是虚数单位若ai2bi,则(abi)2等于()A34i B34。

11、章末复习一、选择题1如图所示的是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()考点归纳推理的应用题点归纳推理在图形中的应用答案A解析从所给三个图形中,可以看出,三个黑色三角形在进行顺时针旋转,每次旋转都是隔一格,故选A.2若abCbaD.考点分析法及应用题点分析法解决不等式问题答案C解析取a2,b1,验证可知C正确3我们把1,4,9,16,25,这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是()An(n1) Bn(n1)C(n1)2 Dn2考点归纳推理的。

12、第第 3 章章 数系的扩充与复数的引入数系的扩充与复数的引入 章末复习章末复习 学习目标 1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复 数的相关运算 1复数的有关概念 (1)复数的概念:形如 abi(a,bR)的数叫做复数,其中 a,b 分别是它的实部和虚部若 b0,则 abi 为实数,若 b0,则 abi 为虚数,若 a0 且 b0,则 abi 为纯虚数 (2。

13、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

14、第三章 数系的扩充与复数的引入 章末复习 学习目标1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算且认识复数加减法的几何意义 1复数的有关概念 (1)复数的概念 形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数 (2)复数相等:abicdiac且bd(a,b,c,dR) (3)共轭复数:ab。

15、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

16、章末复习一、选择题1i是虚数单位,若集合S1,0,1,则()AiS Bi2SCi3S D.S考点虚数单位i及其性质题点虚数单位i的运算性质答案B2已知i是虚数单位,m,nR,且mi1ni,则等于()A1 B1 Ci Di考点复数的乘除法运算法则题点乘除法的运算法则答案D解析由mi1ni(m,nR),得m1且n1.则i.3若a为正实数,i为虚数单位,2,则a等于()A. B2 C. D1考点复数的乘除法运算法则题点利用乘除法求复数中的未知数答案A解析(ai)(i)1ai,|1ai|2,解得a或a(舍)4已知z112i,z2m(m1)i,i为虚数单位,且两复数的乘积z1z2的实部和虚部为相等的正数,则实数m的值为()A B. C D.考。

17、章末复习,第五章 数系的扩充与复数的引入,学习目标,1.掌握复数的有关概念及复数相等的充要条件. 2.理解复数的几何意义. 3.掌握复数的相关运算.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.复数的有关概念 (1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的 和 .若b0,则abi为实数,若 ,则abi为虚数,若 ,则abi为纯虚数. (2)复数相等:abicdi (a,b,c,dR). (3)共轭复数:abi与cdi共轭 (a,b,c,dR). (4)复平面:建立直角坐标系来表示复数的平面叫作复平面. 叫作实轴, 叫作虚轴.实轴上的点都表示 ;除了原点外,。

18、章末复习一、填空题1已知f(x)x31,设i是虚数单位,则复数的虚部是_答案1解析f(i)i31i1,1i,虚部是1.2若复数(aR,i为虚数单位)是纯虚数,则实数a_.答案6解析i.若复数是纯虚数,则0,且0,所以a6.3复数的虚部是_答案解析i,其虚部是.4若复数zi是纯虚数(i为虚数单位),则tan的值为_考点复数的概念题点由复数的分类求未知数答案7解析复数zi是纯虚数,cos 0,sin 0,cos ,sin ,tan ,则tan7.5若i为虚数单位,则_.答案1i解析1i.6下列说法中正确的是_(填序号)若(2x1)iy(3y)i,其中xR,yCR,则必有2i1i;若一个数。

19、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫做复平面x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

【第3章 数系的扩充与复数的引入章末复习】相关PPT文档
2022版新高考数学人教版一轮课件:第4章 第5讲 数系的扩充与复数的引入
人教A版高中数学选修1-2《第三章数系的扩充与复数的引入》章末复习课课件
第五章 数系的扩充与复数的引入 章末复习ppt课件
【第3章 数系的扩充与复数的引入章末复习】相关DOC文档
第三章 数系的扩充与复数 章末复习学案(含答案)
第四章 数系的扩充与复数的引入 章末检测试卷(含答案)
第四章 数系的扩充与复数的引入 章末复习课时对点练(含答案)
第3章 数系的扩充与复数的引入 章末复习学案(苏教版高中数学选修2-2)
第四章 数系的扩充与复数的引入 章末复习学案(含答案)
第三章 数系的扩充与复数的引入 章末复习 学案(含答案)
第五章 数系的扩充与复数的引入 章末复习学案(含答案)
第五章 数系的扩充与复数的引入 章末复习试卷(含答案)
《第3章 数系的扩充与复数的引入章末复习》课时对点练(含答案)
第3章数系的扩充与复数的引入 章末复习学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开