内容 基本要求 略高要求 较高要求 轴对称 了解图形的轴对称, 理解对应 点所连的线段被对称轴垂直 平分性质; 了解物体的镜面对 称 能按要求作出简单平面图形经过一次 或两次轴对称后的图形; 掌握简单图形之间的轴对称关系,并 能指出对称轴;掌握基本图形(等腰 三角形、矩形、菱形、等腰梯形、正 多边
第6讲 线与角 同步培优教师版Tag内容描述:
1、 内容 基本要求 略高要求 较高要求 轴对称 了解图形的轴对称, 理解对应 点所连的线段被对称轴垂直 平分性质; 了解物体的镜面对 称 能按要求作出简单平面图形经过一次 或两次轴对称后的图形; 掌握简单图形之间的轴对称关系,并 能指出对称轴;掌握基本图形(等腰 三角形、矩形、菱形、等腰梯形、正 多边形、 圆) 的轴对称性及相关性质。 能运用轴对称进行 图案设计 旋转 了解图形的旋转, 理解对应点 到旋转中心的距离相等、 对应 点与旋转中心连线所成的角 彼此相等的性质; 会识别中心 对称图形 能按要求作出简单平面图形旋转后的 图。
2、 第第 6 6 讲讲 一一、二元一次方程的概念二元一次方程的概念 1 1 二元一次方程: 二元一次方程: 含有两个未知数, 并且含未知数的项的最高次数是 1 的整式方程, 叫做二元一次方程 二 元一次方程的一般形式一般形式为:axbyc(,)ab 【例例】xy ,xy ,xy ,xy 等都是二元一次方程 2 2二元一次方程的判定:二元一次方程的判定: 必须同时满足四个条件: (1)含有两。
3、 第第 3 3 讲讲 平行线的性质和构造平行线的性质和构造 模块一模块一 平行线折线模型拓展平行线折线模型拓展 1 1平行线折线模型平行线折线模型 模 型 示例剖析 2 b 1 3 a 若ab,则123 ; 若123 ,则ab 2 b 1 3 a 若ab,则123360 ; 若123360 ,则ab 2 2平行线折线模型拓展平行线折线模型拓展 模块二模块二 等积变形(利用平行线来。
4、 第第 2 2 讲讲 一一、平行线平行线 1 1平行线平行线:在同一平面内,永不相交的两条直线称为平行线用“/”表示 2 2平行公理平行公理:经过直线外一点,有且只有一条直线与这条直线平行 【例】【例】如图 1,过直线a外一点A作b/a,c/a,则b与c重合 3 3平行公理推论平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行 简记为:平行于同一条直线的两条直线平行平行。
5、 第第 1 1 讲讲 一一、直线的相交直线的相交 1 1两条直线的位置关系两条直线的位置关系 在同一平面内,两条直线要么相交,要么平行 【注】【注】两条直线:有且只有一个公共点,两直线相交; 无公共点,则两直线平行; 两个或两个以上公共点,则两直线重合,视为一条直线 2 2直线的相交直线的相交两线四角两线四角 (1)邻补角邻补角:两条直线相交所构成的四个角中,有一条公共边且另一边互为反向延长线的。
6、第六讲第六讲 一一、线线 1基本概念:基本概念: (1)直线直线:能够向两端无限延伸的线叫做直线 表示方法:表示方法:直线可以用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序; 直线也可以用一个小写字母来表示 【例】【例】如图 1:可以记为直线 AB 或直线 BA; 如图 2:记为直线 l 图 1 图 2 (2)射线射线:直线上的一点和这点一旁的部分叫射线,这个点叫做射。