,第九章 平面解析几何,相等,不在,1,第九章 平面解析几何,F1、F2,|F1F2|,坐标轴,原点,a2b2,第7讲 抛物线 基础达标 1已知点A(2,3)在抛物线C:y22px(p0)的准线上,记C的焦点为F,则直线AF的斜率为() AB1 CD 解析:选C.由已知,得准线方程为x2,所以F的坐
第7章解析几何初步章末复习Tag内容描述:
1、第7讲 抛物线基础达标1已知点A(2,3)在抛物线C:y22px(p0)的准线上,记C的焦点为F,则直线AF的斜率为()AB1CD解析:选C.由已知,得准线方程为x2,所以F的坐标为(2,0)又A(2,3),所以直线AF的斜率为k.2已知抛物线C1:x22py(p0)的准线与抛物线C2:x22py(p0)交于A,B两点,C1的焦点为F,若FAB的面积等于1,则C1的方程是()Ax22yBx2yCx2yDx2y解析:选A.由题意得,F,不妨设A,B(p,),所以SFAB2pp1,则p1,即抛物线C1的方程是x22y,故选A.3(2019丽水调研)已知等边ABF的顶点F是抛物线C:y22px(p0)的焦点,顶点B在抛物线的准线l上且ABl,则点A的。
2、高考调研高考调研 第第1页页 第九章第九章 解析几何解析几何 新课标版新课标版 数学(理)数学(理) 高三总复习高三总复习 第九章第九章 解析几何解析几何 高考调研高考调研 第第2页页 第九章第九章 解析几何解析几何 新课标版新课标版 数学(理)数学(理) 高三总复习高三总复习 第第7课时课时 双双 曲曲 线线 (一一) 高考调研高考调研 第第3页页 第九章第九章 解析几何解析几何 新课。
3、章末复习(二),第二章 解析几何初步,学习目标 1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识. 2.培养综合运用知识解决问题的能力,能灵活、熟练运用待定系数法求解圆的方程,能解决直线与圆的综合问题,并学会运用数形结合的数学思想.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.圆的方程 (1)圆的标准方程: . (2)圆的一般方程: . 2.点和圆的位置关系 设点P(x0,y0)及圆的方程(xa)2(yb)2r2. (1)(x0a)2(y0b)2r2点P . (2)(x0a)2(y0b)2r2点P . (3)(x0a)2(y0b)2r2点P . 3.直线与圆的位置关系 设直线l与圆C的圆心之间的距离为。
4、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知直线l的倾斜角为135,则直线l的斜率为()A.1 B.1 C. D.答案A解析由tan 1351可知,直线l的斜率为1.2.若a,则方程x2y2ax2ay2a2a10表示的圆的个数为()A.4 B.3 C.2 D.1答案D解析方程x2y2ax2ay2a2a10,即方程2(ya)21aa2,当1aa20,即2a时,方程表示以为圆心, 为半径的圆.所以所给的方程表示圆的个数为1.3.若直线x2y50与直线2xmy60互相垂直,则实数m等于()A.1 B.1 C. D.答案B解析由两直线垂直,得1,解得m1.4.设点B是点A(2,3,5)关于xOy平面的对。
5、章末复习课基础过关1.过两点A(4,y),B(2,3)的直线的倾斜角是135,则y=()A.1 B.1 C.5 D.5解析因为倾斜角为135,所以ktan 1351.所以kAB1,所以y5.答案D2.点P(5a1,12a)在圆(x1)2y21的外部,则a的取值范围为()A.|a|1 B.aC.|a| D.|a|解析由已知得(5a11)2(12a)21,即169a21,故|a|.答案D3.已知点A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|=()A. B. C. D.解析由题意知AB的中点M(2,3),它到点C的距离d.答案B4.圆x2y24上的点到直线xy20的距离的最大值为_.解析因为圆x2y24的圆心O到直线xy20的距离d,所以圆上的点到直线距。
6、章末复习(二)一、网络构建二、要点归纳1圆的方程(1)圆的标准方程:(xa)2(yb)2r2.(2)圆的一般方程:x2y2DxEyF0(D2E24F0)2点和圆的位置关系设点P(x0,y0)及圆的方程(xa)2(yb)2r2.(1)(x0a)2(y0b)2r2点P在圆外(2)(x0a)2(y0b)2r相离;dr相切;dr1r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|5.与圆有关的最值问题的常见类型(。
7、章末复习(一)一、网络构建二、要点归纳1直线的倾斜角与斜率(1)直线的倾斜角的范围是0180.(2)当k存在时,90;当k不存在时,90.(3)斜率的求法:依据倾斜角;依据直线方程;依据两点的坐标2直线方程几种形式的转化3两条直线的位置关系设l1:A1xB1yC10,l2:A2xB2yC20,则(1)平行A1B2A2B10且B1C2B2C10;(2)相交A1B2A2B10;(3)重合A1A2,B1B2,C1C2(0)或(A2B2C20)4距离公式(1)两点间的距离公式已知点P1(x1,y1),P2(x2,y2),则|P1P2|.(2)点到直线的距离公式点P(x0,y0)到直线l:AxByC0的距离d;两平行直线l1:AxByC10与l2:AxByC20的距离d .题。
8、章末复习1直线倾斜角的范围直线倾斜角的范围是0180.2写出直线的斜率公式(1)直线l的倾斜角满足90,则直线斜率ktan_.(2)P1(x1,y1),P2(x2,y2)是直线l上两点,且x1x2,则直线l的斜率为k.3直线方程的几种形式(1)点斜式:yy0k(xx0)(2)斜截式:ykxb.(3)两点式:(x1x2,y1y2)(4)截距式:1(a0,b0)(5)一般式:AxByC0.4两直线平行与垂直的条件直线方程l2:yk2xb2 l2:A2xB2yC20l1:yk1xb1,l1:A1xB1yC10,平行的等价条件l1l2k1k2且b1b2l1l2垂直的等价条件l1l2k1k21l1l2A1A2B1B20由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;。
9、章末复习课网络构建核心归纳1点的坐标(1)两点间距离公式:两点P1(x1,y1),Q(x2,y2)间的距离|PQ|.(2)定比分点坐标公式:分两点A(x1,y1),B(x2,y2)所构成的有向线段为定比的分点的坐标为(,)(3)三角形重心坐标公式:以(x1,y1),(x2,y2),(x3,y3)为顶点的三角形的重心坐标为(,)(4)三角形面积的公式:以向量(x1,y1),(x2,y2)为两边的三角形的面积S|x1y2x2y1|.2直线与方程(1)直线法向量的应用直线垂直于向量(A,B)(法向量)直线方程AxByC0(C待定)两条直线平行或重合它们的法向量平行两条直线相交它们的法向量不平行两直线垂直它们的法。