习题课 离散型随机变量的均值,第二章 随机变量及其分布,学习目标 1.进一步熟练掌握均值公式及性质. 2.能利用随机变量的均值解决实际生活中的有关问题.,题型探究,内容索引,当堂训练,题型探究,例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求: (1)不放回抽样时,抽取次品数的均值;,解答
第二章 概率 章末复习课 学案人教B版高中数学选修2-3Tag内容描述:
1、习题课 离散型随机变量的均值,第二章 随机变量及其分布,学习目标 1.进一步熟练掌握均值公式及性质. 2.能利用随机变量的均值解决实际生活中的有关问题.,题型探究,内容索引,当堂训练,题型探究,例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求: (1)不放回抽样时,抽取次品数的均值;,解答,类型一 放回与不放回问题的均值,随机变量的分布列为,随机变量服从超几何分布,n3,M2,N10,,(2)放回抽样时,抽取次品数的均值.,解答,不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.,反思与感悟,跟踪训练1 甲袋和乙。
2、章末复习课网络构建核心归纳1.能够熟练使用直接法、待定系数法、定义法求椭圆方程;能够利用“坐标法”研究椭圆的基本性质;能够利用数形结合思想、分类讨论思想、参数法解决椭圆中的有关问题.2.能够根据所给的几何条件熟练地求出双曲线方程,并能灵活运用双曲线定义、参数间的关系解决相关问题;准确理解参数 a,b,c,e 的关系、渐近线及其几何意义,并灵活运用.3.会根据方程形式或焦点位置判断抛物线的标准方程的类型;会根据抛物线的标准方程确定其几何性质以及会由几何性质确定抛物线的方程.了解抛物线的一些实际应用.要点一 数形结。
3、第二章 推理与证明,章末复习课,学习目标 1.整合本章知识要点. 2.进一步理解合情推理与演绎推理的概念、思维形式、应用等. 3.进一步熟练掌握直接证明与间接证明. 4.理解数学归纳法,并会用数学归纳法证明问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 合情推理,(1)归纳推理:由 到 、由 到 的推理. (2)类比推理:由 到 的推理. (3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.,部分,整体,个别,一般,特殊,特殊,知识点二。
4、章末复习课,第二章 随机变量及其分布,学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性. 2.理解超几何分布及其导出过程,并能够进行简单的应用. 3.了解条件概率和两个事件相互独立的概念,理解n次独立重复试验模型及二项分布,并能解决一些简单的实际问题.,4.理解取有限个值的离散型随机变量的均值、方差的概念,能计算简单的离散型随机变量的均值、方差,并能解决一些简单的实际问题. 5.通过实际问题的频率分布直方图,了解正态分布曲线的特点及曲线所表示的意义.,题型探究,知识梳理,内。
5、第一章第一章 计数原理计数原理 章末复习章末复习 学习目标 1.掌握分类加法计数原理与分步乘法计数原理.2.理解排列与组合的区别与联系, 能利用排列组合解决一些实际问题.3.能用计数原理证明二项式定理,掌握二项式定理和二项 展开式的性质 1分类加法计数原理 做一件事,完成它有 n 类办法,在第一类办法中有 m1种不同的方法,在第二类办法中有 m2 种不同的方法在第 n 类办法中有 mn种不同的方。
6、第三章第三章 统计案例统计案例 章末复习章末复习 学习目标 1.会求回归直线方程, 并用回归直线进行预报.2.理解独立性检验的基本思想及实 施步骤 1最小二乘法 对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则回归直线方程为y b xa ,其 中b i1 n xi x yi y i1 n xi x 2 i1 n xiyin x y i1 n x2in x 2 ,a y b。
7、第二章第二章 概率概率 章末复习章末复习 学习目标 1.理解取有限个值的离散型随机变量及分布列的概念.2.掌握超几何分布及二项 分布,并能进行简单的应用,了解分布密度曲线的特点及表示的意义.3.理解条件概率与事件 相互独立的概念.4.会计算简单的离散型随机变量的均值和方差,并能利用均值和方差解决一 些实际问题 一、离散型随机变量的分布列 1定义 设离散型随机变量 X 的取值为 a1,a2,随机。
8、第二章第二章 概率概率 章末复习章末复习 学习目标 1.了解条件概率和两个事件相互独立的概念.2.理解离散型随机变量及其分布列, 并掌握两个特殊的分布列二项分布和超几何分布.3.理解离散型随机变量的期望、方差的 概念,并能应用其解决一些简单的实际问题.4.了解正态分布曲线特点及曲线所表示的意义 1条件概率的性质 (1)非负性:0P(B|A)1. (2)可加性:如果 B 和 C 是两个互斥事件, 。