,专题训练(三)巧用抛物线的对称性解题 类型之一利用对称性求交点 1.如图3-ZT-1,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为() A.0 B.-1 C.1 D.2 2.2019三明一模 二次函数y=x2-6x+m满足以下条件:当-2x-1时
第三十章二次函数专题训练四二次函数图像信息专题含答案Tag内容描述:
1、专题训练(三)巧用抛物线的对称性解题类型之一利用对称性求交点1.如图3-ZT-1,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为()A.0 B.-1 C.1 D.22.2019三明一模 二次函数y=x2-6x+m满足以下条件:当-2x-1时,它的图像位于x轴的下方;当8x9时,它的图像位于x轴的上方,则m的值为()A.27 B.9 C.-7 D.-16图3-ZT-1 图3-ZT-23.如图3-ZT-2,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴的负半轴交于点B,对称轴为直线x=-2.点C在抛物线上,且位于点A,B之间(点C不与点A,B重合).若ABC的周长为a,则四边形AOBC的周长。
2、回顾与反思类型之一二次函数的表达式1.2019济宁 将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的函数表达式是()A.y=(x-4)2-6 B.y=(x-1)2-3C.y=(x-2)2-2 D.y=(x-4)2-22.已知二次函数的图像经过点(0,3),(1,4),(3,0),求该二次函数的表达式.3.如图30-X-1,ABCD与抛物线y=-x2+bx+c相交于点A,B,D,点C在抛物线的对称轴上,且在x轴上,已知点B(-1,0),BC=4.(1)求抛物线的函数表达式;(2)求直线BD的函数表达式.图30-X-14.如图30-X-2,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.(1)求该抛物线。
3、专题训练(五)与二次函数有关的综合题型类型之一二次函数与一次函数的综合题1.如图5-ZT-1,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1y2,此时M=0.那么使得M=1的x的值为.图5-ZT-12.一次函数y=-43x的图像如图5-ZT-2所示,它与关于x的二次函数y=ax2+2ax+c的图像交于A,B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图像的顶点为D.若点D与点C关于x轴对称,且ACD的面积等于163,求此二次函。
4、专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定a,b,c及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b-1 B.b-1C.b1 D.b12.2019通辽 在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的图像如图4-ZT-1所示,现给出以下结论:abc3 B.a5。