第二部分专题四题型三 1如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处 第1题图 (1)连接CF,求证:四边形AECF是菱形; (2)若E为BC的中点,BC26,tanB,求EF的长 (1)证明:如答图1.平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处
动态几何问题Tag内容描述:
1、第二部分专题四题型三1如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处第1题图(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC的中点,BC26,tanB,求EF的长(1)证明:如答图1.平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,EAEC,12.四边形ABCD为平行四边形,ADBC,23,13,AEAF,AFCE.AFCE,四边形AECF为平行四边形AEAF,四边形AECF为菱形第1题答图(2)解:如答图2,连接CF,过点E作EHAB于点H.E为BC的中点,BC26,BEEC13.四边形AECF为菱形,AEAFCE13,AFBE,四边形ABEF为平行四边形,EFAB.EAEB,EHAB,A。
2、第二部分专题四题型一1(2019三明质检)如图,在ABC中,点P是BC边上的动点,点M是AP的中点,PDAB,垂足为D,PEAC,垂足为E,连接MD,ME.第1题图(1)求证:DME2BAC;(2)若B45,C75,AB6,连接DE,求MDE周长的最小值(1)证明:证法一:如答图1,PDAB,PEAC,M为AP的中点,DMEMAPAM,12,34,51221,63423,DME5621232BAC.证法二:PDAB,PEAC,M为AP的中点,DMEMAPAMPM,点A,D,P,E在以M为圆心,MA为半径的圆上,DME2BAC.第1题答图(2)解:如答图2,过点M作MNDE于点N.由(1)知DMEMAP,DMNEMNDME,DNEN.B45,C75,BAC60°。
3、第二部分专题四题型二1如图,矩形ABCD的对角线AC,BD相交于点O,将线段AC绕点A逆时针旋转一定角度到AE,连接CE,F为CE的中点,连接OF.(1)求证:OFOB;(2)若OFBD,且AC平分BAE,求BAE的度数第1题图(1)证明:四边形ABCD是矩形,ACBD,OBODBD,OAOCAC,OBAC.又OAOCAC,F为CE的中点,OFAE.由旋转的性质可知AEAC,OBOF.(2)解:如答图AC平分BAE,12,第1题答图设12x.OAOCAC,F为CE的中点,OFAE,31x.ACBD,OBODBD,OAOCAC,OAOB,52x,42x.OFBD,BOF90,即3490,x2x90.x30,BAE2x60&。
4、重难专题解读,第二部分,专题四 动态几何问题,1,动态几何问题是指题设图形中存在一个或多个动点、动线等在线段、弧线上运动的一类开放性题目动态几何问题有两个显著的特点:一是“动态”,常以图形或图象中点、线的运动(包括图形的平移、旋转、折叠、相似等图形变换)为重要的构图背景;二是“综合”,主要体现为三角形、四边形等几何知识与函数、方程等代数知识的综合解决此类问题的关键是在认真审题的基础上先做到“静中求动”,根据题意画一些不同运动时刻的图形,对整个运动过程有一个初步的理解,理清运动过程中的各种情形;然后“动中。