欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

对数 第2课时 对数的运算 学案含答案

第2课时指数函数及其性质的应用 基础过关 1.已知a30.2,b0.23,c(3)0.2,则a,b,c的大小关系为() A.abc B.bac C.cab D.bca 解析a30.2(1,3),b0.2353125,c(3)0.2ac. 答案B 2.若函数f(x)是R上的增函数,则实数a的取值范围为

对数 第2课时 对数的运算 学案含答案Tag内容描述:

1、第2课时指数函数及其性质的应用基础过关1.已知a30.2,b0.23,c(3)0.2,则a,b,c的大小关系为()A.abc B.bacC.cab D.bca解析a30.2(1,3),b0.2353125,c(3)0.2ac.答案B2.若函数f(x)是R上的增函数,则实数a的取值范围为()A.4,8) B.(1,)C.(1,8) D.4,)解析由题意可知,yf(x)在R上是增函数,所以解得4a8.答案 A3.函数y2x2ax在(,1)上是增函数,则实数a的取值范围是_.解析由复合函数的单调性知,ux2ax的对称轴x1,即a2.答案2,)4.若函数f(x)则不等式f(x)的解集为_.解析当x0时,由f(x)得()x,0x1;当x0时,不等式明显不成立,。

2、53对数函数的图像和性质第1课时对数函数的图像和性质基础过关1函数yax与ylogax(a0,a1)在同一坐标系中的图像形状可能是()解析函数ylogax恒过定点(1,0),排除B;当a1时,yax是增函数,ylogax是减函数,当0bcBcbaCcabDacb解析ylogax的图像在(0,)上是上升的,所以底数a1,函数ylogbx,ylogcx的图像在(0,)上都是下降的,因此b,c(0,1),又易知cb,故acb.答案D3函数yloga(2x3)1的图像恒过定点P,则点P的坐标是()A(2,1) B(2,0)C(2,1) D(1,1)解析当2。

3、第2课时习题课对数函数的图像及其性质的应用基础过关1若f(x)mlog2x为对数函数,则()Am1 Bm2 CmR Dm1解析只有形如ylogax(a0且a1)的函数,才是对数函数答案A2若对数函数过点(4,2),则其解析式为()Ayx By2x Cylog4x Dylog2x解析设解析式为ylogax(a0且a1),因为点(4,2)在对数函数图像上,故2loga4,即a2.答案D3函数f(x)loga(2x)的定义域为()A(0,) B(2,)C(,2) D(,0)解析由题意2x0,即x2,故定义域为(,2)答案C4已知函数f(x)ln(x)1,f(a)4,则f(a)_解析设g(x)f(x)1ln(x),则g(x)为奇函数由f(a)4,知g(a)f(a)13.g(a)3,则。

4、3.2对数函数3.2.1对数第1课时对数的概念一、选择题1在对数式bloga3(5a)中,实数a的取值范围是()A(,3)(5,) B(3,5)C(3,4)(4,5) D(3,4)答案C解析由得3a5且a4.2log3等于()A4 B4 C. D答案B解析令log3t,则3t34,t4.3方程的解是()A9 B. C. D.答案D解析22,log3x2,x32.4已知f(ex)x,则f(3)等于()Alog3e Bln 3 Ce3 D3e答案B解析f(ex)x,由ex3得xln 3,即f(3)ln 3,故选B.5若loga3m,loga5n,则a2mn的值是()A15 B75 C45 D225答案C解析由loga3m,得am3,由loga5n,得。

5、第2课时对数函数的图象和性质的应用基础过关1若集合A,则RA等于()A(,0B.C(,0D.答案A解析x,即x,0x,即A,RA.故选A.2.已知alog3 ,b,clog ,则a,b,c的大小关系为()A.abc B.bacC.cba D.cab答案D解析log log3151log35,因为函数ylog3x为增函数,所以log35log3 log331,因为函数y为减函数,所以ab.故选D.3函数f(x)logax(0a1)在a2,a上的最大值是()A0B1C2Da答案C解析0a1,f(x)logax在a2,a上是减函数,f(x)maxf(a2)logaa22.4函数f(x)lg()是()A奇函数B。

6、第2课时 对数的运算,第三章 4 对 数,学习目标 1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件. 2.掌握换底公式及其推论. 3.能熟练运用对数的运算性质进行化简求值.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 对数运算性质,思考 有了乘法口诀,我们就不必把乘法还原成为加法来计算.那么,有没有类似乘法口诀的东西,使我们不必把对数式还原成指数式就能计算?,答案 有.例如,设logaMm,logaNn, 则amM,anN,MNamanamn, loga(MN)mnlogaMlogaN. 得到的结论loga(MN)logaMlogaN可以当公式直接进行对数运算.,梳理 。

7、2.2.3对数函数的图象和性质第1课时反函数及对数函数的图象和性质学习目标1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质知识链接1作函数图象的步骤为列表、描点、连线另外也可以采取图象变换法2指数函数yax(a0且a1)的图象与性质.a10a1图象定义域R值域(0,)性质过定点过点(0,1),即x0时,y1函数值的变化当x0时,y1;当x0时,0y1当x0时,0y1;当x0时,y1单调性是R上的增函数是R上的减函数预习导引1对数函数的概念把函数ylogax(x0,a0,a1)叫作(以a为底的)对数函数,其中x是自变量,函数的定义。

8、第2课时对数型函数及其性质基础过关1.函数f(x)logax(0a1)在a2,a上的最大值是()A.0 B.1 C.2 D.a解析0a1,f(x)logax在a2,a上是减函数,f(x)maxf(a2)logaa22.答案C2.设alog54,b(log53)2,clog45,则()A.alog54log53log510,1alog54log53b(log53)2.又clog45log441.cab.答案D3.函数f(x)的定义域是_.解析由题意有解得1x2.答案(1,24.函数f(x)|logx|的单调增区间是_.解析f(x)当x1时,tlogx是减函数,f(x)logx是。

9、2.2 对数函数22.1 对数与对数运算第 1 课时 对 数课时目标 1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.掌握对数的基本性质,会用对数恒等式进行运算1对数的概念如果 ax N(a0,且 a1),那么数 x 叫做_,记作_,其中 a 叫做_,N 叫做 _2常用对数与自然对数通常将以 10 为底的对数叫做_,以 e 为底的对数叫做_,log 10N 可简记为_,log eN 简记为_ 3对数与指数的关系若 a0,且 a1,则 axNlog aN_.对数恒等式:alog aN_;log aax_(a0 ,且 a1) 4对数的性质(1)1 的对数为_;(2)底的对数为_;(3)零和负数_。

10、第2课时 对数的运算性质,第3章 3.2.1 对数,1.掌握对数的运算性质,能运用运算性质进行对数的有关计算. 2.了解换底公式,能用换底公式将一般对数化为自然对数或常用对数.,学习目标,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,栏目索引,知识梳理 自主学习,知识点一 对数的运算性质,答案,如果a0,且a1,M0,N0.那么: (1)loga(MN) ;,logaMlogaN,;,(3)logaMn (nR).,nlogaM,思考 当M0,N0时,loga(MN)logaMlogaN,loga(MN)logaMlogaN是否成立?,答 不一定成立.,logaMlogaN,知。

11、3.2对数函数3.2.1对数第1课时对数的概念基础过关1.方程2log3x的解是()A. B.4 C. D.9解析2log3x22,log3x2,x32.答案C2.若logxz,则下列各式中正确的是()A.y7xz B.yx7z C.y7xz D.yz7x解析由logxz,得xz,()7(xz)7,则yx7z.答案B3.将23化为对数式为_.解析根据对数的定义知,log23.答案log234.已知xlog23,则_.解析由xlog23得2x3,所以原式.答案5.若等式log0成立,则x_.解析由1得x1.答案16.求下列各式中的x值.(1)logx27;(2)log2x;(3)logx(32)2;(4)log5(log2x)0;(5)xlog27.解(1)由logx27,得x2。

12、第 2 课时 对数的运算课时目标 1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.3.了解换底公式并能用换底公式将一般对数化成自然对数和常用对数1对数的运算性质如果 a0,且 a1,M0 ,N 0,那么:(1)loga(MN)_;(2)loga _;MN(3)logaMn_( nR)2对数换底公式logab (a0,且 a1,b0,c0,且 c1);logcblogca特别地:log ablogba_(a0,且 a1,b0,且 b1)一、选择题1下列式子中成立的是(假定各式均有意义 )( )Alog axlogaylog a(xy)B(log ax)nn logaxC. log alogaxn nxD. log axlog aylogaxlogay2计算:log 916log881 。

13、第2课时对数的运算性质及换底公式基础过关1若a0,a1,x0,y0,xy,下列式子正确的个数为()logaxlogayloga(xy);logaxlogayloga(xy);logalogaxlogay;loga(xy)logaxlogay.A0 B1 C2 D3解析根据对数的运算性质知,这四个式子都不正确故选A.答案A2计算lg 83lg 5的值为()A3 B1 C1 D3解析lg 83lg 5lg 8lg 53lg 8lg 125lg(8125)lg 1 0003.答案D3已知lg a,lg b是方程2x24x10的两根,则的值是()A4 B3 C2 D1解析lg alg b2,lg alg b,(lg alg b)2(lg alg b)24lg a。

14、3.2对数函数3.2.1对数第1课时对数的概念学习目标1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值知识点一对数的概念一般地,如果a(a0,a1)的b次幂等于N,即abN,那么就称b是以a为底N的对数,记作logaNb,其中,a叫做对数的底数,N叫做真数通常将以10为底的对数称为常用对数,以e为底的对数称为自然对数log10N可简记为lg N,logeN简记为ln N.提示logaN是一个数,是一种取对数的运算结果仍是一个数,不可分开书写知识点二对数与指数的关系(1)对数与指数的关系若a0,a1,且N0,则axNlogaNx.对数恒等式:N;logaaxx(a0,且。

15、第2课时对数的运算性质及换底公式基础过关1.化简log6122log6的结果为()A.6 B.12 C.log6 D.解析原式log6log62log6log6.答案C2.已知lg 2a,lg 3b,则log312等于()A.2a B. C. D.解析log312.答案D3.计算:_.解析原式.答案4.计算:_.解析原式logloglog94log35log32log35log310.答案5.已知3a5bM,且2,则M_.解析由3a5bM,得alog3M,blog5M,故logM3logM5logM152,M.答案6.计算:(1)log25log58;(2)log23log34log45log52;解(1)log25log58log283.。

16、第2课时对数的运算性质一、选择题1若3x2,则x等于()Alg 3lg 2 Blg 2lg 3C. D.答案D解析因为3x2,由指数式与对数式的互化关系可得xlog32,故选D.2若a0且a1,M0,则下列各式错误的是()AMBlogab(b0且b1)CmlogaM(m0)DlogaM(m0)答案C解析由对数恒等式和换底公式即得选项C错误3已知lg 2a,lg 3b,则用a,b表示lg 15为()Aba1 Bb(a1)Cba1 Db(1a)考点对数的运算题点用代数式表示对数答案A解析lg 15lg(35)lg 3lg 5lg 3lg lg 31lg 2ba1.4若log5log36log6x2,则x等于()A9 B. C25 D.考点对数的运算题点换底公式的应用。

17、第二章 基本初等函数()2.2 对数函数2.2.1 对数与对数运算( 第二课时)学习目标理解对数的运算性质;知道能用换底公式将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对数对简化运算的作用.合作学习一、复习回顾,承上启下1.对数的定义:log aN=x,其中 a(0,1)(1,+)与 N(0,+).2.指数式与对数式的互化:ax=N . 3.重要性质或公式:(1)负数与零没有对数;(2)loga1= ,log aa= ( a0,且 a1); (3)对数恒等式 = (a0,且 a1). 4.指数运算法则:(1)aman= ( a0,m,nR); (2)(am)n= (a0,m,nR); (3)(ab)n= (a0,b0,nR ). 二、设计问题,创设。

18、4对数第1课时对数学习目标1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.知识点一对数的概念1.对数的概念一般地,如果a(a0,a1)的b次幂等于N,即abN,那么数b叫作以a为底N的对数,记作logaNb.其中a叫作对数的底数,N叫作真数.2.常用对数与自然对数通常将以10为底的对数叫作常用对数,N的常用对数log10N简记作lg_N.以e为底的对数称为自然对数,N的自然对数logeN简记作ln N.知识点二对数与指数的关系一般地,对数与指数的关系如下:若a0,且a1,则axNlogaNx.对数恒等式:N;logaaxx(a0,且a1).对数的性质:(1)1的对数。

19、第2课时对数的运算性质学习目标1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件.2.掌握换底公式及其推论.3.能熟练运用对数的运算性质进行化简求值知识点一对数运算性质一般地,如果a0,且a1,M0,N0,那么(1)loga(MN)logaMlogaN;(2)logalogaMlogaN;(3)logaMnnlogaM(nR)知识点二换底公式1一般地,我们有logaN,其中a0,a1,N0,c0,c1.这个公式称为对数的换底公式2常用结论logablogba1,logab.题型一对数的计算例1计算下列各式的值:(1)lglglg;(2)lg 52lg 8lg 5lg 20(lg 2)2;(3).解(1)原式(5lg 22lg 7)lg 2(2lg 7lg 5)lg 2l。

20、第2课时对数的运算学习目标1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件.2.掌握换底公式及其推论.3.能熟练运用对数的运算性质进行化简求值.知识点一对数运算性质如果a0,a1,M0,N0,则(1)loga(MN)logaMlogaN.(2)logaMnnlogaM(nR).(3)logalogaMlogaN.知识点二换底公式对数换底公式为logbN(a,b0,a,b1,N0).特别地:logablogba1(a0,且a1,b0,且b1).1.log2x22log2x.()2.loga(2)(3)loga(2)loga(3).()3.logaMlogaNloga(MN).()4.logx2.()题型一对数式的求值例1计算下列各式:(1)log5;(2)log2(3242);(3。

【对数 第2课时 对数的运算 学案含答案】相关PPT文档
北师大版高中数学必修一课件:3.4 第2课时 对数的运算
苏教版高中数学必修1课件:3.2.1 第2课时 对数的运算性质
【对数 第2课时 对数的运算 学案含答案】相关DOC文档
《3.2.1对数(第2课时)指数函数及其性质的应用》课后作业含答案
3.2.1(第1课时)对数的概念 课时对点练(含答案)
《3.2.2对数函数(第2课时)对数型函数及其性质》课后作业含答案
《3.2.1对数(第1课时)对数的概念》课后作业含答案
第2课时 对数的运算性质及换底公式 课后作业(含答案)
3.2.1(第1课时)对数的概念 学案(含答案)
《3.2.1对数(第2课时)对数的运算性质及换底公式》课后作业(含答案)
3.2.1(第2课时)对数的运算性质 课时对点练(含答案)
2019-2020学年人教A版数学必修1学案:2.2.1(第2课时)对数与对数运算
对数 第1课时 对数 学案(含答案)
3.2.1(第2课时)对数的运算性质 学案(含答案)
对数 第2课时 对数的运算 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开