22.1.2 二次函数二次函数 yax的图象和性质的图象和性质 教学背景: 学生通过前面已熟知了画函数图象的方法:列表描点连线,也学习了一次函数反比例函数的图像画法及形状,这为探究函数 yax2 的图象做好了知识上的准备。学生也具备了基本作,a,9,4,16,15,17,参考右图,完成以下填空:,2
二次根式的概念和性质Tag内容描述:
1、22.1.2 二次函数二次函数 yax的图象和性质的图象和性质 教学背景: 学生通过前面已熟知了画函数图象的方法:列表描点连线,也学习了一次函数反比例函数的图像画法及形状,这为探究函数 yax2 的图象做好了知识上的准备。学生也具备了基本作。
2、,a,9,4,16,15,17,参考右图,完成以下填空:,2,7,一般地,二次根式有下面的性质:,性质一:,3,5,大家抢答,性质二:,填空:,请比较左右两边的式子,议一议: 与 有什么关系?当 时, ;当 时,一般地,二次根式有下面的性质:,2,2,5,5,0,0,相等,(7) 数 在数轴上的位置如图,则,(8)如图, 是直角坐标系中一点,求点P到原点的距离.,例1计算:,例2 计算:,1.计算下列各题:,(1),(2),试一试,小结,二次根式的性质及它们的应用:,(1)(2),2,2,2,。
3、一、选择题1(2019株洲)( )A B4 C D【答案】B【解析】根据二次根式的乘法法则,得。2(2019益阳)下列运算正确的是( )A. B. C. D.【答案】D【解析】,A错误;,B错误;不是同类二次根式,无法合并,C错误;,D正确.3(2019常德)下列运算正确的是( )A B3 C2 D 【答案】D【解析】A选项2,A选项错误;B选项2,B选项错误;C选项2,C选项错误;D选项,D选项正确 4(2019武汉)式子在实数范围内有意义,则x的取值范围是( )Ax0Bx1Cx1Dx1【答案】C【解析】由在实数范围内有意义,得x10,解得x1,故选B5(。
4、 一、选择题一、选择题 9 (20192019温州)温州)已知二次函数 y=x 2-4x+2,关于该函数在-1x3 的取值范围内,下列说法正确的是 ( ) A有最大值-1,有最小值-2 B有最大值 0,有最小值-1 C有最大值 7,有最小值-1 D有最大值 7,有最小值-2 【答案答案】D 【解析】【解析】二次函数 y=x 2-4x+2=(x-2)2-2,该函数在-1x3 的取值范围内,当 x=2 时,y 有最小值-2;当 x=-1 时,y 有最大值 7故选 D. 7 (2019 绍兴绍兴 )在平面直角坐标系中,抛物线)3)(5(xxy经过变换后得到抛物线)5)(3(xxy, 则这个变换可以是 ( ) A.向左平移 2 个单位 B.向右。
5、,苏科数学,5.2 二次函数的图像和性质,函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,y x22x3, (x1)22,由活动一可知:函数y (x1)22的图像可以看成yx2平移得到,即y x22x3是函数yx2先向左平移一个。
6、,苏科数学,5.2 二次函数的图像和性质,你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数yx21的图像有哪些性质?,猜想:函数yx22的图像和y=x2的图像的位置有何关系?函数yx22的图像有哪些性质?,探索。
7、,苏科数学,5.2 二次函数的图像和性质,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,例2 画出yx2图像,画一画,观察函数yx2图像,说出图像的特征,抛物线关于y轴对称,当x0时,y随x增大而减小,抛物线开口向下,当x0时,y随x增大而增大,图像有最高点,过(0。
8、,苏科数学,5.2 二次函数的图像和性质,请在同一坐标系中画出函数 和 、 和 的图像,画一画,函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,1二次函数yax的图像是一条抛物线,抛物线的顶点在原点,对称轴为y轴,2当a0时,抛物线的开口向上,顶点是抛物线的最低点,3当a0时,抛物。
9、,1.2 二次根式的性质(1),合作学习:,已知下列各正方形的面积,求其边长.学.科.网zxxk.组卷网,你能猜想,= ;,= ;,试一试:,3,= ;,31,一般地,二次根式有下面的性质:学.科.网zxxk.,2.3,5,3,口答:,请比较左右两边的式子, 议一议: 与 有什么关系?,3,3,5,5,0,0,填空:,大家抢答,比一比:,比较分析 和,先开方,后平方,先平方,后开方,a0,a取全体实数,a,a学.科.网,根号a的平方,根号下a平方,讲解例题,练一练:,计算:,练一练:,数 在数轴上的位置如图,则,0,1,讲解例题,练习,练一练:,1、判断题,A,3.实数a、b、c在数轴上的位置如图所示,化简,练一练:,。
10、,1.2二次根式的性质(2),二次根式有哪些性质?,口诀:二次根式的平方等于被开方数学.科.网zxxk.组卷网,10,10,10,做一做学.科.网zxxk.,做一做,一般地,二次根式有下面的性质:,慧眼识真!,思考:,例1 化简,(1),(2),(3),解:,=,=,12,(1),15,=,180,(3),=,=,=,3,(2),=,=,5,例2 化简,;,(1),(2),解:,(1),=,=,(2),=,=,=,二次根式化简的要求:,1.根号内不再含有开得尽方的因式,2.根号内不再含有分母,练一练1:化简:,例4:先化简,再求出各算式的近似值(精确到0.01),合理应用二次根式的性质,可以简化实数的运算!,练习2,先化简,再求出。
11、16.1 二根次式,第十六章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次根式的概念,1.理解二次根式的概念.(重点) 2.掌握二次根式有意义的条件.(重点) 3.会利用二次根式的非负性解决相关问题.(难点),导入新课,情景引入,里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你能猜出下面表情包是谁吗?,你们是根据哪些特征猜出的呢?,下面来看傅园慧在里约奥运会赛后的采访视频,注意前方高能表情包.,通过表情包来辨别人物,最重要的是根据个人的特征,那么数学的特征是什么呢?,“数学根本上是玩概念的,不是玩技巧,技巧。
12、第22章:二次函数,人教版九年级上册,22.1 二次函数的图像和性质,22.1.1 二次函数,学习目标,1.理解二次函数的概念,会根据给出的函数解析式判断其是否为二次函数。 2.通过探索具体问题中的数量关系和变化规律,体会二次函数是刻画现实世界中数量关系的一个有效的数学模型。 3.会列出实际问题中的二次函数关系,并能够确定其自变量的取值范围。,在某变化过程中的两个变量x、y,当变量x在某个范围内取一个确定的值,另一个变量y总有唯一的值与它对应。这样的两个变量之间的关系我们把它叫做函数关系。对于上述变量x 、y,我们把y叫x的函数。 。
13、一、选择题1(2019温州)已知二次函数y=x2-4x+2,关于该函数在-1x3的取值范围内,下列说法正确的是( )A有最大值-1,有最小值-2 B有最大值0,有最小值-1C有最大值7,有最小值-1 D有最大值7,有最小值-2【答案】D【解析】二次函数y=x2-4x+2=(x-2)2-2,该函数在-1x3的取值范围内,当x=2时,y有最小值-2;当x=-1时,y有最大值7故选D.2(2019绍兴 )在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是 ( )A.向左平移2个单位 B.向右平移2个单位 C.向左平移8个单位 D.向右平移8个单位【答案】B【解析】y(x+5)(x3)(x+1)21。
14、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第1章 二次根式 1.2 二次根式的性质,在实数范围内,负数没有平方根.,下列各式是二次根式吗? .,回顾旧知、掌握新知,表示一些正数的算术平方根,a叫被开方数,,回顾旧知、掌握新知,2.a可以是数,也可以是式.,4.a0, 0 .,3.形式上含有二次根号 .,5.既可表示开方运算,也可表示运算的结果.,1.表示a的算术平方根.,( 双重非负性),回顾旧知、掌握新知,请比较左右两边的式子,想一想: 1、 与 有什么关系? 2、当 时, 当 时,一般地,二次根式有下面的性质:,2,2,5,5,0,0,探索一:,|a|,0,2,2,3,3,探索二。
15、 一、选择题1. (2018 北京东城区一模)当函数 的函数值 y 随着 x 的增大而减小时,x21yx的取值范围是A B C D 为任意实数 x 0x 1答案 B2、 ( 2018 年北京昌平区第一学期期末质量抽测) 将二次函数 用配方法化成265yx的形式,下列结果中正确的是2()yxhkA B652(3)5yxC D2(3)4yx 9答案:C3、 (2018 北京朝阳区第一学期期末检测)如图,一条抛物线与 x 轴相交于 M、N 两点(点M 在点 N 的左侧) ,其顶点 P 在线段 AB 上移动若点 A、B 的坐标分别为(2,3) 、 (1,3) ,点 N 的横坐标的最大值为 4,则点 M 的横坐标的最小值为(A) 1 (B) 3。
16、15.1 二次根式二次根式 第第 1 课时课时 二次根式的相关概念及应用二次根式的相关概念及应用 学习目标:学习目标: 1.理解二次根式的概念,能够识别二次根式. 2.根据理解二次根式及二次根式中被开方数的非负性.难点 学习重点:学习重点:。
17、15.1 二次根式二次根式 第第 2 课时课时 二次根式的性质二次根式的性质 学习目标:学习目标: 1.理解复习巩固二次根式的相关概念及其非负性. 2.理解并掌握二次根式的性质.难点 3.灵活运用二次根式的性质进行计算.重点 学习重点:学习。
18、 教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 二次根式的概念与性质 待提升的知 识点/题型 1、掌握二次根式的概念及有意义的条件 2、掌握二次根式的性质(1)和(2) ,并能够简单运用 知识梳理知识梳理 知识点一知识点一 【知识点知识点 1:二次根式的概念二次根式的概念】 代数式(0)a a 叫做二次根式二次根式.仍然读作“根号a”,其中a是被开方数. 例如:例如: 222 21 2,1,4(40),(2) 32 abac bacx x 等。
19、12.1 二次根式第 2 课时二次根式的性质练习一、选择题1下列各式中,正确的是( )A. 3 B 3( 3) 2 32C. 3 D. 3( 3) 2 322若 a1,化简 1 的结果是( )( a 1) 2A a2 B2 a C a D a3满足 3 a 的正整数 a 的值有( )( a 3) 2A1 个 B2 个 C3 个 D4 个4若 是整数,则正整数 n 的最小值是( )5 nA2 B3 C4 D55实数 a, b 在数轴上对应点的位置如图 K391 所示,且| a|b|,则化简 a2的结果为( )( a b) 2图 K391A2 a b B2 a bC b D2。
20、 教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 二次根式的概念与性质 待提升的知 识点/题型 1、掌握二次根式的概念及有意义的条件 2、掌握二次根式的性质(1)和(2) ,并能够简单运用 知识梳理知识梳理 知识点一知识点一 【知识点知识点 1:二次根式的概念二次根式的概念】 代数式(0)a a 叫做二次根式二次根式.仍然读作“根号a”,其中a是被开方数. 例如:例如: 222 21 2,1,4(40),(2) 32 abac bacx x 等。