专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定abc及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c当x乐山)乐山)如图,抛物线4412xy与x轴交于A、B两点,P是以点C(03)为圆心,2为半径的圆上的动点,Q是线段一、选择题一、选择题1.(2019潍坊)抛物线y=x
二次函数数学知识点Tag内容描述:
1、 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。 2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。 基础知识回顾基础知识回顾: : 一、一、 二二次函数的概念及解析式次函数的概念及解析式 1一般地,形如 yax 2 bxc(a,b,c 是常数,a0)的 2、2 函数,叫做二次函数 2、二次函数解析式的三种形式 (1)一般式:。
2、 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。 2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。 基础知识回顾基础知识回顾: : 二次函数的图象和性质 二次函数的 图象和性质 图象 开口 向上上 向下下 对 称 轴 x 顶 点 坐标 增 减 性 当x时, y随x的增大而增大增大; 当 x时, y 随 x 的增大。
3、 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。会用描点法画出二次函数的图像,理解二次函数的性质。 2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。 基础知识回顾基础知识回顾: : 一二次函数与一元二次方程的关系一二次函数与一元二次方程的关系 两个。
4、 第第 1010 讲讲 二次函数和方程、不等式综合二次函数和方程、不等式综合 模块模块一:一:二次函数和方程综合二次函数和方程综合 1函数 11 ya xb和二次函数 2 22 ya xb xc的交点 (1)交点求解,联立方程组 11 2 22 ya xb ya xb xc ,并代入求解 (2)交点个数,联立方程组 11 2 22 ya xb ya xb xc ,消元得到一元二次方程。
5、 专题专题 37 37 二次函数问题二次函数问题 1.二次函数的概念二次函数的概念: 一般地,自变量 x 和 y 之间存在如下关系: y=ax2+bx+c(a0,a、b、c 为常数),则称 y 为 x 的二次函 数。抛物线)0,( 2 acbacbxaxy是常数,叫做二次函数的一般式。 2.2.二次函数二次函数 y=axy=ax 2 2 +bx+c(a +bx+c(a0)0)的图像与性质的图。
6、20212021 中考三轮查漏补缺:二次函数的实际应用中考三轮查漏补缺:二次函数的实际应用 一、选择题一、选择题 1. 某种服装的销售利润 y(万元)与销售数量 x(万件)之间满足函数解析式 y2x24x5,则 利润的( ) A最大值为 5 万元 B最大值为 7 万元 C最小值为 5 万元 D最小值为 7 万元 2. 某广场有一喷水池,水从地面喷出,以水平地面为 x 轴,出水点为原点,建立如。
7、- 1 - 二次函数压轴大题二次函数压轴大题(含答案)(含答案) 1.已知二次函数 yax 2+bx3a 经过点 A(1,0) 、C(0,3) ,与 x 轴交于另一点 B,抛物线 的顶点为 D (1)求此二次函数解析式; (2)连接 DC、BC、DB,求证:BCD 是直角三角形; (3)在对称轴右侧的抛物线上是否存在点 P,使得PDC 为等腰三角形?若存在,求出符合条 件的点 P 的坐标;若不存。
8、2021 年中考数学一轮复习年中考数学一轮复习二次函数优生辅导训练二次函数优生辅导训练 1如图,抛物线 yax2+bx+4 交 y 轴于点 A,交过点 A 且平行于 x 轴的直线于另一点 B,交 x 轴于 C,D 两 点(点 C 在点 D 右边) ,对称轴为直线 x,连接 AC,AD,BC若点 B 关于直线 AC 的对称点恰好落 在线段 OC 上,下列结论中错误的是( ) A点 B 坐标为(5,。
9、2020 年江苏省中考数学试题分类(年江苏省中考数学试题分类(4)二次函数二次函数 一二次函数的性质(共一二次函数的性质(共 4 小题)小题) 1 (2020镇江)点 P(m,n)在以 y 轴为对称轴的二次函数 yx2+ax+4 的图象上则 mn 的最大值等于 ( ) A15 4 B4 C 15 4 D 17 4 2 (2020无锡)请写出一个函数表达式,使其图象的对称轴为 y 轴: 3 (。
10、第 16 课时 二次函数的应用(1-2 课时) 教学目标:教学目标:通过复习,查缺补漏,发展学生数学建模、数学抽象的学科素养,提高综合应试水平. 复习重点:复习重点:二次函数解决实际问题中的最值 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: 例 1.一小球抛出后,距离地面的高度和飞行时间满足函数解析式(m)h(s)t 2 6(2)7ht ,则小球。
11、浙江省宁波市中考数学高频题型浙江省宁波市中考数学高频题型(十十) 二次函数二次函数 【中考真题】【中考真题】 1.(2017 浙江宁波 25)如图,抛物线 与 x 轴的负半轴交于点 A,与 y 轴交于点 B,连 结 AB点 C 在抛物线上,直线 AC 与 y 轴交于点 D (1)求 c 的值及直线 AC 的函数表达式; (2)点 P 在 x 轴的正半轴上,点 Q 在 y 轴正半轴上,连结 。
12、 考点 11 二次函数 二次函数是非常重要的函数,年年都会考查,总分值为 1820 分,预计 2021 年各地中考还会考,它经常以一个 压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与 几何图形结合来考查. 一、一、二次函数的概念二次函数的概念:一般地,形如 y=ax2+bx+c(a,b,c 是常数,a0)的函数,叫做二次函数 二、二次函数解析式的。
13、 1 考点分析考点分析:二次函数的实际应用考察销售利润方案问题是最常见的,并且 根据二次函数的性质,在一定的范围内,求出符合要求的最大值得出最大利润, 那么我们就要对销售利润问题的知识掌握熟练,以下知识点能很好的帮助我们解 决这类题目。 遇到二次函数的应用题我们需要考虑以下问题:遇到二次函数的应用题我们需要考虑以下问题: 1.看清题目,理清楚条件,弄懂题目的意思,知道要求什么,便于我们找准 合适的自变量 X 与相应的函数 Y,这是开头也是非常重要的。 2.条件整理清楚后,抓住数量关系列出函数关系式,如果要研究面积。
14、高考数学函数专题训练 二次函数一、选择题1.二次函数,如果(其中),则()A B C D【答案】D【解析】由得所以故选D.2.已知函数有两个不同的零点,-2和,三个数适当排序后既可成为等差数列,也可成为等比数列,则函数的解析式为( )ABCD【答案】C【解析】由题意,函数有两个不同的零点,可得,则,又由和,三个数适当排序后既可成为等差数列,也可成为等比数列,不妨设,则,解得,所以,所以,故选C.3.若二次函数y=ax2+bx+c和y=cx2+bx+a(ac0,ac)。
15、 2.4 幂函数与二次函数幂函数与二次函数 最新考纲 考情考向分析 1.了解幂函数的概念 2.结合函数 yx,yx2,yx3,y1 x,y 1 2 x 的图象,了解它们的变化情况 3.理解并掌握二次函数的定义,图象及性质 4.能用二次函数,方程,不等式之间的关系解 决简单问题. 以幂函数的图象与性质的应用为主,常与 指数函数、对数函数交汇命题;以二次函 数的图象与性质的应用为主,常与方程、 不等式等知识交汇命题,着重考查函数与 方程,转化与化归及数形结合思想,题型 一般为选择、填空题,中档难度. 1幂函数 (1)幂函数的定义 一般地,形如 yx的函数称。
16、 一、选择题一、选择题 1. (2019潍坊)抛物线 y=x2bx+3 的对称轴为直线 x=1若关于 x 的一元二次方程 x2bx+3t=0(t 为实数) 在1x4 的范围内有实数根,则 t 的取值范围是( ) A2t11 Bt2 C6t11 D2t6 【答案】A 【解析】由题意得:1 2 b ,b=2,抛物线解析式为 y=x22x+3,当1x4 时,其图象如图所示: 从图象可以看出当 2t11 时,抛物线 y=x22x+3 与直线 y=t 有交点,故关于 x 的一元二次方程 x2bx+3t=0 (t 为实数)在1x4 的范围内有实数根,则 t 的取值范围是 2t11,故选择 A 方法二:把 y=x22x+3t(1x4)的图象向下平移 2 个单位时图象与。
17、 一、选择题一、选择题 1. (2019乐山)乐山)如图,抛物线4 4 1 2 xy与x轴交于A、B两点,P是以点C(0,3)为圆心,2 为半径的 圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是( ) A3 B 2 41 C 2 7 D4 【答案】【答案】C 【解析】【解析】连接 PB,令4 4 1 2 xy=0,得 x=4,故 A(-4, ) , (4,0) ,O 是 AB 的中点,又Q是线段PA的 中点,OQ= 1 2 PB,点 B 是圆 C 外一点,当 PB 过圆心 C 时,PB 最大,OQ 也最大,此时 OC=3,OB=4, 由勾股定理可得 BC=5, PB=BC+PC=5+2=7,OQ= 1 2 PB= 7 2 ,故选 C. 二、填空题二、填空。
18、知识点过关培优训练:二次函数1在平面直角坐标系中,抛物线yx2+bx+c经过点A、B,C,已知A(1,0),C(0,3)(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EFx轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由2在直角坐标系中,ABO,O为坐标原点,A(0,3),B(6,3),二次函数y。
19、专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定a,b,c及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b-1 B.b-1C.b1 D.b12.2019通辽 在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的图像如图4-ZT-1所示,现给出以下结论:abc3 B.a5。