欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

二次项定理

12.1二次根式第1课时二次根式练习一、选择题1下列各式中是二次根式的有()(1);(2);(3);(4).a16x2432链接听课例1归纳总结A1个专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定abc及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c当x济宁将抛物线y=

二次项定理Tag内容描述:

1、,苏科数学,5.4 二次函数与一元二次方程(1),(1)解一元一次方程x10; (2)画一次函数y x 1的图像,并指出函数y x 1的图像与x轴有几个交点; (3)一元一次方程x 1 0与一次函数y x 1有什么联系?,打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度 y(单位:米)与飞行距离 x(单位:百米)满足二次函数 :y 5x2 20x,这个球飞行的水平距离最远是多少米?,y(米),x(百米),4,1,2,3,10,y=x2+2x,yx2 2x,图像与x轴有2个交点:,(2,0) (0,0),x22x0,b2 4ac0,,x1 2 , x2 0,二次函数与一元二次方程,。

2、,苏科数学,5.5 用二次函数解决问题(1),用 16 m 长的篱笆围成矩形的养兔场饲养小兔,怎样围可使小兔的活动范围最大?,思考:,1.某种粮大户去年种植优质水稻360亩,平均每亩收益440元他计划今年多承租若干亩稻田预计原360亩稻田平均每亩收益不变,新承租的稻田每增加1亩,其每亩平均收益比去年每亩平均收益少2元该种粮大户今年应多承租多少亩稻田,才能使总收益最大?,问题一:,2.去年鱼塘里饲养鱼苗10千尾平均每千尾鱼的产量为1000kg今年计划继续向鱼塘里投放鱼苗,预计每多投放鱼苗1千尾,每千尾鱼的产量将减少50kg今年应投放鱼苗多少千。

3、,苏科数学,5.2 二次函数的图像和性质,函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,y x22x3, (x1)22,由活动一可知:函数y (x1)22的图像可以看成yx2平移得到,即y x22x3是函数yx2先向左平移一个。

4、,苏科数学,5.2 二次函数的图像和性质,你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数yx21的图像有哪些性质?,猜想:函数yx22的图像和y=x2的图像的位置有何关系?函数yx22的图像有哪些性质?,探索。

5、,苏科数学,5.2 二次函数的图像和性质,请在同一坐标系中画出函数 和 、 和 的图像,画一画,函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,1二次函数yax的图像是一条抛物线,抛物线的顶点在原点,对称轴为y轴,2当a0时,抛物线的开口向上,顶点是抛物线的最低点,3当a0时,抛物。

6、,苏科数学,5.2 二次函数的图像和性质,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,例2 画出yx2图像,画一画,观察函数yx2图像,说出图像的特征,抛物线关于y轴对称,当x0时,y随x增大而减小,抛物线开口向下,当x0时,y随x增大而增大,图像有最高点,过(0。

7、,苏科数学,5.5 用二次函数解决问题(2),问题一:,河上有一座桥孔为抛物线形的拱桥,水面宽为6m时,水面离桥孔顶部3m因降暴雨水位上升1m,此时水面宽为多少(精确到0.1m)?,问题二:,闻名中外的赵州桥是我国隋朝工匠发明并建造的一座扁平抛物线形石拱桥,石拱桥跨径36m,拱高约8m试在恰当的平面直角坐标系中求出与该抛物线对应的二次函数解析式,练一练,下图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景。

8、周滚动练习(二)范围:30.130.3时间:40分钟分值:100分一、选择题(每小题5分,共35分)1.下列函数关系中,是二次函数的是()A.正三角形的面积S与边长a的关系B.直角三角形的两锐角度数与的关系C.矩形面积一定时,长y与宽x的关系D.等腰三角形的顶角度数与底角度数的关系2.二次函数y=-3x2-6x+5的图像的顶点坐标是()A.(-1,8) B.(1,8)C.(-1,2) D.(1,-4)3.一条抛物线的形状、开口方向与y=12x2-4x+3的图像相同,顶点在(-2,1),则抛物线的表达式为 ()A.y=12(x-2)2+1 B.y=12(x+2)2-1C.y=12(x+2)2+1 D.y=-12(x+2)2+14.已知二次函数y=(x-1)2-1(0x3)的图像如图G-。

9、2020年中考总复习:分式与二次根式学案【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算【知识网络】【考点梳理】考点一、分式的有关概念及性质1分式设A、B表示两个整式如果B中含有字母,式子就叫做分式注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于。

10、30.1二次函数知识点 1二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=3x-1 B.y=ax2+bx+cC.s=2t2-2t+1 D.y=x2+1x2. 二次函数y=2x(x-3)的二次项系数与一次项系数的和为()A.2 B.-2 C.-1 D.-43.若函数y=(3-m)xm2-7-x+1是二次函数,则m的值为()A.3 B.-3 C.3 D.94.若函数y=mxn+2x-1是y关于x的二次函数,则m,n.5.教材练习第1题变式 二次函数y=x(3-5x)-1的二次项系数、一次项系数 、常数项分别为.6.下列各式中,y一定是x的二次函数的有哪些?y一定不是x的二次函数的有哪些?对于y有可能是x的二次函数的,请补充条件,使它一定是y关于x的二次。

11、30.5二次函数与一元二次方程的关系知识点 1二次函数图像与x轴交点的横坐标1.(1)二次函数y=ax2+bx+c的图像如图30-5-1所示,则方程ax2+bx+c=0的根是,;(2)方程x2+3x+2=0的根是,抛物线y=x2+3x+2与x轴的交点坐标是和.图30-5-12.已知二次函数y=x2+bx+c的图像与x轴的两个交点坐标分别为(3,0)和(-1,0),则一元二次方程x2+bx+c=0的两个根是()A.x1=1,x2=3 B.x1=-3,x2=1C.x1=3,x2=-1 D.x1=-1,x2=-33.二次函数y=-x2+6x-9的图像与x轴交点的横坐标为.知识点 2二次函数图像与x轴的交点个数4.教材“做一做”变式题 抛物线y=-3x2-x+4与x轴的公共点的个数是()A。

12、自我综合评价(二)范围:第三十章二次函数时间:40分钟分值:100分一、选择题(每小题5分,共30分)1.在同一坐标系中,作y=3x2+2,y=-3x2-1,y=13x2的图像,则它们()A.都是关于y轴对称B.顶点都在原点C.都开口向上D.以上都不对2.在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度3.二次函数y=(x-2)2+3,当0x5时,y的取值范围为()A.3y12 B.2y12C.7y12 D.3y74.已知二次函数y=x2+(m-1)x+1,当x1时,y随x的增大而增大,则m的取值。

13、专题训练(五)与二次函数有关的综合题型类型之一二次函数与一次函数的综合题1.如图5-ZT-1,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1y2,此时M=0.那么使得M=1的x的值为.图5-ZT-12.一次函数y=-43x的图像如图5-ZT-2所示,它与关于x的二次函数y=ax2+2ax+c的图像交于A,B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图像的顶点为D.若点D与点C关于x轴对称,且ACD的面积等于163,求此二次函。

14、回顾与反思类型之一二次函数的表达式1.2019济宁 将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的函数表达式是()A.y=(x-4)2-6 B.y=(x-1)2-3C.y=(x-2)2-2 D.y=(x-4)2-22.已知二次函数的图像经过点(0,3),(1,4),(3,0),求该二次函数的表达式.3.如图30-X-1,ABCD与抛物线y=-x2+bx+c相交于点A,B,D,点C在抛物线的对称轴上,且在x轴上,已知点B(-1,0),BC=4.(1)求抛物线的函数表达式;(2)求直线BD的函数表达式.图30-X-14.如图30-X-2,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.(1)求该抛物线。

15、专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定a,b,c及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b-1 B.b-1C.b1 D.b12.2019通辽 在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的图像如图4-ZT-1所示,现给出以下结论:abc3 B.a5。

16、12.1二次根式第 1课时二次根式练习一、选择题1下列各式中是二次根式的有( )(1) ;(2) ;(3) ; (4) .a 16 x2 4 32链 接 听 课 例 1归 纳 总 结A1 个 B2 个 C3 个 D4 个22018达州 二次根式 中的 x的取值范围是 ( )2x 4 链 接 听 课 例 2归 纳 总 结A x2 B x2 C x2 D x23若 是二次根式,则 a的值可能是( )aA2 B32C1 D142016盐城 若 a, b, c为 ABC的三边长,且满足| a4| 0,则 c的值b 2可以为( )A5 B6 C7 D8二、填空题52017呼和浩特 使式子 有意义的 x的取值范围为_11 2x6请你写出一个二次根式,要求被开方。

【二次项定理】相关PPT文档
5.4二次函数与一元二次方程(1)ppt课件
5.5用二次函数解决问题(1)ppt课件
5.2二次函数的图像和性质(4)ppt课件
5.2二次函数的图像和性质(3)ppt课件
5.2二次函数的图像和性质(2)ppt课件
5.2二次函数的图像和性质(1)ppt课件
5.5用二次函数解决问题(2)ppt课件
22.1.1二次函数ppt习题课件
22.3实际问题与二次函数(第1课时)实际问题与二次函数(1)ppt习题课件
22.3实际问题与二次函数(3)ppt习题课件
22.3实际问题与二次函数(2)ppt习题课件
【二次项定理】相关DOC文档
第三十章二次函数周滚动练习(二)含答案
2020年中考总复习:分式与二次根式学案含解析
30.1二次函数 同步分层训练(含答案)
30.5二次函数与一元二次方程的关系 同步分层训练(含答案)
第三十章二次函数自我综合评价(二)含答案
第三十章二次函数专题训练(五)与二次函数有关的综合题型(含答案)
第三十章二次函数回顾与反思 同步分层训练(含答案)
第三十章二次函数专题训练(四)二次函数图像信息专题(含答案)
《12.1二次根式(第1课时)二次根式》课堂达标练习(含答案解析)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开