欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

高考数学函数专题训练抽象函数含答案解析

专题 06 三角函数及解三角形1【2019 年高考全国卷理数 】函数 f(x)= 2sinco在 的图像大致为,A BC D2 【2019 年高考全国卷理数 】关于函数 有下述四个结论:()sin|i |fxxf(x)是偶函数 f(x)在区间( , )单调递增2f(x)在 有 4 个零点 f(x)的

高考数学函数专题训练抽象函数含答案解析Tag内容描述:

1、专题 06 三角函数及解三角形1【2019 年高考全国卷理数 】函数 f(x)= 2sinco在 的图像大致为,A BC D2 【2019 年高考全国卷理数 】关于函数 有下述四个结论:()sin|i |fxxf(x)是偶函数 f(x)在区间( , )单调递增2f(x)在 有 4 个零点 f(x)的最大值为 2,其中所有正确结论的编号是A BC D3【2019 年高考全国卷理数】下列函数中,以 为周期且在区间( , )单调递增的是242Af(x)=|cos2x| Bf(x)=|sin2x| Cf(x)=cos|x| Df (x)=sin|x|4【2019 年高考全国卷理数】已知 (0 , ),2sin2 =cos2+1,则 sin=2A B 15 5C D325【2019 年高考全国卷理数】设函。

2、专题 04 三角函数与解三角形小题部分【训练目标】1、掌握三角函数的定义,角的推广及三角函数的 符号判断;2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形;3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数;4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式;5、熟记正弦定理,余弦定理及三角形的面积公式;6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。【温馨小提示】此类问题在高考中属于必考题,难度中等,。

3、单元训练金卷高三数学卷(A)第 4 单 元 三 角 函 数注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 区 域 内 。 写 在 试 题 卷 。

4、专题专题 11 一次函数 一单选题一单选题 1 2021 云南文山云南文山 九年级 九年级如图,在平面直角坐标系中,一次函数 1yx 的图象是 A B C D 2 2021 陕西西安陕西西安 交大附中分校九年级 交大附中分校九年级一次函数 。

5、专题14 反比例函数 一单选题 12021建昌县教师进修学校九年级如图,反比例函数x0的图象经过正方形ABCD的顶点A,B,连接AO,BO,作AFy轴于点F,与OB交于点E,E为OB的中点,且,则k的值为 ABCD 22021四川省宜宾市第。

6、专题13 二次函数 一单选题 12021西安益新中学九年级若二次函数yax22ax3a的图象过不同的三个点An,y1,B1n,y2,C1,y3,且y1y2y3,则n的取值范围是 AnBnCn且n2Dn 22021建昌县教师进修学校九年级如图。

7、专题 02 函数与导数小题部分【训练目标】1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法;2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题;3、 掌握指数和对数的运算性质,对数的换底公式;4、 掌握指数函数和对数函数的图像与性质;5、 掌握函数的零点存在定理,函数与方程的关系;6、 熟练数形结合的数学思想在解决函数问题的运用;7、 熟练掌握导数的计算,导数的几何意义求切线问题;8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会。

8、专题 03 函数与导数大题部分【训练目标】1、 理解函数的概念,会求函数的定义域 ,值域和解析式,特别是定义域的求法;2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题;3、 掌握指数和对数的运算性质,对数的换底公式;4、 掌握指数函数和对数函数的图像与性质;5、 掌握函数的零点存在定理,函数与方程的关系;6、 熟练数形结合的数学思想在解决函数问题的运用;7、 熟练掌握导数的计算,导数的几何意义求切线问题;8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,。

9、二次函数巩固练习二次函数巩固练习 一选择题(共一选择题(共 10 小题)小题) 1 如图, 抛物线 yx2+2x+c 与 x 轴正半轴, y 轴正半轴分别交于点 A, B 且 OAOB, 则 c 的值为 ( ) A0 B1 C2 D3 2如图,抛物线 yax2+bx+c(a0)的图象经过点(1,2) ,与 x 轴交点的横坐标分别为 x1,x2,其中1 x10,1x22,则下列结论中正确的是( )。

10、单元训练金卷高三数学卷(B )第 2 单 元 函 数 的 概 念 、 性 质 与 初 等 函 数注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题。

11、单元训练金卷高三数学卷(A)第 2 单 元 函 数 的 概 念 、 性 质 与 初 等 函 数注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 。

12、一次函数与反比例函数巩固练习一次函数与反比例函数巩固练习 一选择题(共一选择题(共 13 小题)小题) 1若直线 ymx3 和 y2x+n 相交于点 P(2,3) ,则方程组的解为( ) A B C D 2定义:x表示不超过实数 x 的最大整数例如:1.71,0,23根据你学习函数的经 验,下列关于函数 yx的判断中,正确的是( ) A函数 yx的定义域是一切整数 B函数 yx的图象是经过原点的一。

13、2019 年中考数学专题练习二次函数综合1 (2018市区模拟)如图,在平面直角坐标系 xOy 中,抛物线 yax 2+bx+c 经过A、B 、C 三点,已知点 A( 3,0) ,B(0,3) ,C(1, 0) (1)求此抛物线的解析式(2)点 P 是直线 AB 上方的抛物线上一动点, (不与点 A、B 重合) ,过点 P 作 x 轴的垂线,垂足为 F,交直线 AB 于点 E,作 PDAB 于点 D动点 P 在什么位置时,PDE的周长最大,求出此时 P 点的坐标2 (2019房山区模拟)如图,在平面直角坐标系中,直线 ykx 4k+4 与抛物线y x2x 交于 A、B 两点(1)直线总经过定点,请直接写出该定点的。

14、 专题 13 函数综合 2021 届中考数学压轴大题专项训练(解析版) 1如图,在平面直角坐标系中,点(6,0)A、 (0,12)B 分别在x轴、y轴上,点C是直线2yx与直线AB 的交点,点D在线段OC上, 2 5OD (1)求直线AB的解析式及点C的坐标; (2)求点D的坐标及直线AD的解析式 【解析】解: (1)设直线AB的解析式为:y kxb ,将点(6,0)A、 (0,12)B 代入。

15、高考数学函数专题训练 含绝对值的函数一、选择题1.函数的值域为( )A B. C. D.【答案】B【解析】当时,时,时,时,值域为2函数的图象大致为 ()ABCD【答案】D【解析】由于,排除C选项,排除B选项,不选A,故选D.3设函数的定义域为,且是奇函数,是偶函数,设,则下列结论中正确的是( ) A关于对称 B关于对称 C关于对称 D关于对称【答案】C【解析】因为函数是奇函数,所以是偶函数,即与均为。

16、高考数学函数专题训练 三次函数一、选择题1函数在区间上的最大值、最小值分别为、,则( )A2B4C20D18【答案】C【解析】对函数进行求导得到:,令,解得:,当时,;当时,所以函数在上单调递减,函数在上单调递增,由于,所以最大值,最小值,故,故答案选C2.函数的图像如图所示,则下列结论成立的是( ).A BC D【答案】A【解析】令,可得.又,由函数图像的单调性,可知.由图可知,是的两根,且,.所以,得.故选A.3若函数在上存在极小值点,则实数的取值范围是( )A B C D【答案】B【解析】当时, 在上存在极小值,则当时,即时, 当时, 无极。

17、高考数学函数专题训练 对数函数一、选择题1.已知函数的图象关于直线对称,则函数的值域为( )ABCD【答案】D【解析】函数的图象关于直线对称,即,整理得恒成立,定义域为又,时,函数的值域为故选D2已知且,若,则,的大小关系为( )ABCD【答案】A【解析】由且可得,又由,得,故选A3.函数在上为减函数,则的取值范围是( )A B C D【答案】B【解析】函数由,构成,因为,所以是减函数,那么外层函数就是增函数,。

18、高考数学函数专题训练 取整函数一、选择题x为实数,表示不超过的最大整数,则函数在上为A奇函数 B偶函数 C增函数 D 周期函数【答案】D【解析】因为 ,所以函数是以1为周期的周期函数.故选D2.设x表示不大于x的最大整数, 则对任意实数x, y, 有A. x xB.2x 2xC. xyxyD. xyxy【答案】D【解析】取x=2.5,则-x=-2.5=-3,-x=-2.5=-2,所以A错误;2x=5,2x=22.5=4,所以B错误;再取y=2.8,则x+y=5.3=5,x+y=2.5+2.8=2+2=4,所以C错误;故选D.3.如果对于任意实数,表示不超过的最大整数. 例如,.那么是的 &。

【高考数学函数专题训练抽象函数含答案解析】相关DOC文档
2021年浙教版中考数学一轮复习《第7讲 二次函数》专题训练(含答案解析)
2019届苏科版中考数学专题突破训练 :二次函数综合(含答案解析)
2021届中考数学压轴大题专项训练专题13:函数综合(含答案解析)
高考数学函数专题训练《含绝对值的函数》含答案解析
高考数学函数专题训练《三次函数》含答案解析
高考数学函数专题训练《对数函数》含答案解析
高考数学函数专题训练《取整函数》含答案解析
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开