专题 02 函数问题的解题规律一、函数问题的解题规律解题技巧及注意事项1.定义域陷阱2.抽象函数的隐含条件陷阱3.定义域和值域为全体实数陷阱4.还原后新参数范围陷阱5.参数范围漏解陷阱6.函数求和中的倒序求和问题7.分段函数问题8.函数的解析式求法9.恒成立问题求参数范围问题10.任意存在问题二知识
高考数学命题热点名师解密专题集合的解题技巧理Tag内容描述:
1、专题 02 函数问题的解题规律一、函数问题的解题规律解题技巧及注意事项1.定义域陷阱2.抽象函数的隐含条件陷阱3.定义域和值域为全体实数陷阱4.还原后新参数范围陷阱5.参数范围漏解陷阱6.函数求和中的倒序求和问题7.分段函数问题8.函数的解析式求法9.恒成立问题求参数范围问题10.任意存在问题二知识点【学习目标】1了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域、值域及函数解析式;2在实际情境中,会根据不同的需要选择适当的方法(图象法、列表法、解析法) 表示函数;3了解简单的分段函数,并能简单应用;4掌握求函数定义。
2、专题 31 复数的解题策略一 【学习目标】1理解复数的有关概念,掌握复数相等的充要条件,并会应用2了解复数的代数形式的表示方法,能进行复数的代数形式的四则运算3了解复数代数形式的几何意义及复数的加、减法的几何意义,会简单应用二知识点与方法总结1复数的有关概念(1)复数的概念形如 abi(a,bR)的数叫做复数,其中 a,b 分别是它的实部和虚部,若 b0,则 abi 为虚数,若a=0,则 abi 为纯虚数,i 为虚数单位(2)复数相等:复数 abi c di a =c ,b=d (a,b,c,dR)(3)共轭复数:abi 与 cdi 共轭a =c ,b=-d (a,b,c,dR)(4)复数的模向量 。
3、专题 09 导数与不等式的解题技巧一知识点基本初等函数的导数公式(1)常用函数的导数(C) _(C 为常数); ( x)_;(x 2)_ ; _;(1x)( )_x(2)初等函数的导数公式(x n)_; (sin x)_;(cos x)_; (e x)_;(a x)_ ; (ln x)_;(log ax)_ 【详解】如图所示,直线 l 与 ylnx 相切且与 yx1 平行时,切点 P 到直线 yx1 的距离|PQ| 即为所求最小值(lnx) ,令 1,得 x1.故 P(1,0)由点到直线的距离公式得 |PQ|min= ,故选 C.(三)构造函数证明不等式例 3 【山东省烟台市 2019 届高三数学试卷 】已知定义在( ,0)上的函数 f(x) ,其导函数记为 f(x) 。
4、专题 32 不等式的性质的解题技巧一 【学习目标】1了解现实世界和日常生活中的不等关系2了解不等式(组)的实际背景3掌握不等式的性质及应用二 【知识要点】1不等式的定义用不等号“,”将两个数学表达式连接起来,所得的式子叫做不等式2实数大小顺序与运算性质之间的关系ab0a b;ab0ab;abb b b,bc a c;(3)可加性:ab a+cb+c;ab,cd a+cb+d;(4)可乘性:ab,c0 acbc;a b,c b0,cd0acbd;(5)倒数法则:a b,ab0 ;1(6)乘方性质:a b0 (n2,nN *);(7)开方性质:a b0 (n2,nN *);na(8)有关分数的性质:若 ab0,m 0,则真分数的性质: (b。
5、专题 32 不等式的性质的解题技巧一 【学习目标】1了解现实世界和日常生活中的不等关系2了解不等式(组)的实际背景3掌握不等式的性质及应用二 【知识要点】 1不等式的定义用不等号“,”将两个数学表达式连接起来,所得的式子叫做不等式2实数大小顺序与运算性质之间的关系ab0a b;ab0ab;abb b b,bc a c;(3)可加性:ab a+cb+c;ab,cd a+cb+d;(4)可乘性:ab,c0 acbc;a b,c b0,cd0acbd;(5)倒数法则:a b,ab0 ;1(6)乘方性质:a b0 (n2,nN *);(7)开方性质:a b0 (n2,nN *);na(8)有关分数的性质:若 ab0,m 0,则真分数的性质: (。
6、专题 01 集合的解题技巧一、集合的解题技巧及注意事项1.元素与集合,集合与集合关系混淆问题;2.造成集合中元素重复问题;3.隐含条件问题;4.代表元变化问题;5.分类讨论问题;6子集中忽视空集问题;7.新定义问题;8.任意、存在问题中的最值问题;9.集合的运算问题;10.集合的综合问题。二知识点【学习目标】1了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言( 列举法或描述法)来描述不同的具体问题,理解集合中元素 的互异性;2理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集与。
7、专题 01 集合的解题技巧一、集合的解题技巧及注意事项1.元素与集合,集合与集合关系混淆问题;2.造成集合中元素重复问题;3.隐含条件问题;4.代表元变化问题;5.分类讨论问题;6子集中忽视空集问题;7.新定义问题;8.任意、存在问题中的最值问题;9.集合的运算问题; 10.集合的综合问题。二知识点【学习目标】1了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言( 列举法或描述法)来描述不同的具体问题,理解集合中 元素的互异性;2理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集。