2.3 函数的奇偶性与周期性函数的奇偶性与周期性 最新考纲 考情考向分析 1.结合具体函数,了解函数奇偶性的含义 2.会运用函数图象理解和研究函数的奇偶性 3.了解函数周期性、最小正周期的含义,会判 断、应用简单函数的周期性. 以理解函数的奇偶性、 会用函数的奇偶性 为主,常与函数的单调性、周期性
高考数学一轮复习学案2.6 对数与对数函数含答案Tag内容描述:
1、 2.3 函数的奇偶性与周期性函数的奇偶性与周期性 最新考纲 考情考向分析 1.结合具体函数,了解函数奇偶性的含义 2.会运用函数图象理解和研究函数的奇偶性 3.了解函数周期性、最小正周期的含义,会判 断、应用简单函数的周期性. 以理解函数的奇偶性、 会用函数的奇偶性 为主,常与函数的单调性、周期性交汇命 题,加强函数与方程思想、转化与化归思 想的应用意识, 题型以选择、 填空题为主, 中等偏上难度. 1函数的奇偶性 奇偶性 定义 图象特点 偶函数 一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)f(x),那么函数 f(x)就叫。
2、 3.2 导数的应用导数的应用 最新考纲 考情考向分析 1.了解函数单调性和导数的关系;能利用导数研 究函数的单调性, 会求函数的单调区间(其中多项 式函数一般不超过三次) 2.了解函数在某点取得极值的必要条件和充分条 件;会用导数求函数的极大值、极小值(其中多项 式函数一般不超过三次); 会求闭区间上函数的最 大值、最小值(其中多项式函数一般不超过三次) 3.会利用导数解决某些实际问题(生活中的优化 问题). 考查函数的单调性、 极值、 最值, 利用函数的性质求参数范围;与 方程、 不等式等知识相结合命题, 强化函数与方程思想、转化。
3、第第 3 课时课时 导数与函数的综合问题导数与函数的综合问题 题型一题型一 导数与不等式导数与不等式 命题点 1 证明不等式 典例 (2017 贵阳模拟)已知函数 f(x)1x1 ex ,g(x)xln x. (1)证明:g(x)1; (2)证明:(xln x)f(x)1 1 e2. 证明 (1)由题意得 g(x)x1 x (x0), 当 00, 即 g(x)在(0,1)上为减函数,在(1,)上为增函数 所以 g(x)g(1)1,得证 (2)由 f(x)1x1 ex ,得 f(x)x2 ex , 所以当 00, 即 f(x)在(0,2)上为减函数,在(2,)上为增函数, 所以 f(x)f(2)11 e2(当且仅当 x2 时取等号) 又由(1)知 xln x1(当且仅当 x1 时取等号), 且等号。
4、 2.5 指数与指数函数指数与指数函数 最新考纲 考情考向分析 1.了解指数函数模型的实际背景 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌 握幂的运算 3.理解指数函数的概念及其单调性,掌握指数函数图象通 过的特殊点,会画底数为 2,3,10,1 2, 1 3的指数函数的图象 4.体会指数函数是一类重要的函数模型. 直接考查指数函数的图象与 性质; 以指数函数为载体, 考 查函数与方程、 不等式等交汇 问题, 题型一般为选择、 填空 题,中档难度. 1分数指数幂 (1)我们规定正数的正分数指数幂的意义是 m n anam(a0,m,nN*,且 n1)于是,。
5、 2.4 幂函数与二次函数幂函数与二次函数 最新考纲 考情考向分析 1.了解幂函数的概念 2.结合函数 yx,yx2,yx3,y1 x,y 1 2 x 的图象,了解它们的变化情况 3.理解并掌握二次函数的定义,图象及性质 4.能用二次函数,方程,不等式之间的关系解 决简单问题. 以幂函数的图象与性质的应用为主,常与 指数函数、对数函数交汇命题;以二次函 数的图象与性质的应用为主,常与方程、 不等式等知识交汇命题,着重考查函数与 方程,转化与化归及数形结合思想,题型 一般为选择、填空题,中档难度. 1幂函数 (1)幂函数的定义 一般地,形如 yx的函数称。
6、 2.8 函数与方程函数与方程 最新考纲 考情考向分析 结合二次函数的图象, 了解函数的零点与 方程根的联系, 判断一元二次方程根的存 在性及根的个数. 利用函数零点的存在性定理或函数的图象, 对函数是否存在零点进行判断或利用零点(方 程实根)的存在情况求相关参数的范围,是高 考的热点,题型以选择、填空为主,也可和 导数等知识交汇出现解答题,中高档难度. 1函数的零点 (1)函数零点的定义 对于函数 yf(x)(xD),把使 f(x)0 的实数 x 叫做函数 yf(x)(xD)的零点 (2)三个等价关系 方程 f(x)0 有实数根函数 yf(x)的图象与 x 轴有交点函数 。
7、一轮单元训练金卷高三数学卷(B)第 三 单 元 指 数 函 数 、 对 数 函 数 、 幂 函 数注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 。
8、一轮单元训练金卷 高三 数学卷(A )第 三 单 元 指 数 函 数 、 对 数 函 数 、 幂 函 数注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 。
9、2.6对数与对数函数最新考纲1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对数在简化运算中的作用.2.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道指数函数yax(a0,且a1)与对数函数ylogax(a0,且a1)互为反函数1对数的概念一般地,如果axN(a0,且a1),那么数x叫做以a为底N的对数,记作xlogaN,其中a。
10、2.6 对数与对数函数,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对数在简化运算中的作用. 2.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点. 3.知道指数函数yax(a0,且a1)与对数函数ylogax(a0,且a1)互为反函数.,NEIRONGSUOYIN,内容索引,基础知识。
11、课时跟踪检测(十)对数与对数函数 一抓基础,多练小题做到眼疾手快1(2018淮安调研)函数 f(x)log 2(3x1)的定义域为_解析:由 3x10,解得 x ,所以函数 f(x)的定义域为 .13 (13, )答案: (13, )2函数 f(x)log 3(x22 x10)的值域为_解析:令 t x22 x10( x1) 299,故函数 f(x)可化为 ylog 3t, t9,此函数是一个增函数,其最小值为 log392,故 f(x)的值域为2,)答案:2,)3计算 log23log34( ) 3log4_.3解析:log 23 log34( ) 3l 3 31log4223 3log2224.3lg 3lg 2 2lg 2lg 3答案:44(2019长沙调研)已知函数 ylog a(x3)1( a0, a1)的图象恒过定。
12、第二篇 函数及其性质专题2.06对数与对数函数【考试要求】1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;2.通过具体实例,了解对数函数的概念能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道对数函数ylogax与指数函数yax互为反函数(a0,且a1)【知识梳理】1.对数的概念如果axN(a0,且a1),那么x叫做以a为底N的对数,记作xlogaN,其中a叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:alogaNN;logaabb(a0,且a1).(2)对数的运。
13、12.6 对数与对数函数A 组 基础题组1.设 a,b,c 均为不等于 1 的正实数,则下列等式中恒成立的是( )A.logablogcb=logca B.logablogca=logcbC.loga(bc)=logablogac D.loga(b+c)=logab+logac答案 B log ablogca=logab = =logcb,故选 B.1logaclogablogac2.(2019 浙江台州中学月考)lg -2lg +lg =( )2516 59 3281A.lg2 B.lg3C.4 D.lg5答案 A lg -2lg +lg =lg -lg +lg =lg =lg2,故选 A.2516 59 3281 2516 2581 3281(251681253281)3.在同一直角坐标系中,函数 f(x)=xa(x0),g(x)=logax 的图象可能是( )答案 D a0,且 a1,f(x)=x a在(0,+)上单调递增,排除。
14、2.6对数与对数函数最新考纲考情考向分析1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,的对数函数的图象3.体会对数函数是一类重要的函数模型4.了解指数函数yax(a0,且a1)与对数函数ylogax(a0,且a1)互为反函数.以比较对数函数值大小的形式考查函数的单调性;以复合函数的形式考查对数函数的图象与性质,题型一般为选择、填空题,中低档难度.1.对数的概念一般地,对于指数式abN,我们把“。
15、第二篇 函数及其性质专题 2.06 对数与对数函数【考试要求】1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;2.通过具体实例,了解对数函数的概念能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道对数函数 ylog ax 与指数函数 ya x 互为反函数( a0,且 a1)【知识梳理】1.对数的概念如果 ax N(a0,且 a1),那么 x 叫做以 a 为底 N 的对数,记作 xlog aN,其中 a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:a logaNN;log 。
16、第六节第六节 对数与对数函数对数与对数函数 知识重温知识重温 一必记 4 个知识点 1对数的概念 1对数的定义 如果,那么数 x 叫做以 a 为底 N 的对数,记作, 其中叫做对数的底数,叫做真数 2几种常见对数 对数形式 特点 记法 一般。
17、2.6 对数与对数函数对数与对数函数 典例精析典例精析 题型一 对数的运算 例 1计算下列各题: 12lg 22lg 2 lg 5lg 22lg 21; 2lg 2lg 5lg 8lg 50lg 40. 解析 1原式2 12lg 2212l。
18、26 对数与对数函数对数与对数函数 教材梳理 1对数 1对数:如果 axNa0,且 a1,那么 x 叫做以 a 为底 N 的,记作 x 其中 a 叫做对数的,N 叫做 2两类重要的对数 常用对数:以为底的对数叫做常用对数,并把 log10N。
19、 2.6 对数与对数函数对数与对数函数 最新考纲 考情考向分析 1.理解对数的概念及其运算性质, 知道用换底 公式将一般对数转化成自然对数或常用对 数;了解对数在简化运算中的作用 2.理解对数函数的概念及其单调性, 掌握对数 函数图象通过的特殊点,会画底数为 2,3,10, 1 2, 1 3的对数函数的图象 3.体会对数函数是一类重要的函数模型 4.了解指数函数 yax(a0, 且 a1)与对数函 数 ylogax(a0,且 a1)互为反函数. 以比较对数函数值大小的形式考查函 数的单调性; 以复合函数的形式考查对 数函数的图象与性质,题型一般为选 择、填空题,中低。