9.4 直线与圆直线与圆、圆与圆的位置关系圆与圆的位置关系 最新考纲 考情考向分析 1.能根据给定直线、圆的方程,判断直线与圆的位置关 系;能根据给定两个圆的方程判断两圆的位置关系 2.能用直线和圆的方程解决一些简单的问题 3.初步了解用代数方法处理几何问题的思想. 考查直线与圆的位置关系、圆与圆
高考数学一轮复习学案9.8 曲线与方程含答案Tag内容描述:
1、 9.4 直线与圆直线与圆、圆与圆的位置关系圆与圆的位置关系 最新考纲 考情考向分析 1.能根据给定直线、圆的方程,判断直线与圆的位置关 系;能根据给定两个圆的方程判断两圆的位置关系 2.能用直线和圆的方程解决一些简单的问题 3.初步了解用代数方法处理几何问题的思想. 考查直线与圆的位置关系、圆与圆 的位置关系的判断;根据位置关系 求参数的范围、最值、几何量的大 小等题型主要以选择、填空题为 主,要求相对较低,但内容很重要, 有时也会在解答题中出现. 1判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离 。
2、 6.1 数列的概念与简单表示法数列的概念与简单表示法 最新考纲 考情考向分析 1.了解数列的概念和几种简单的表示方法 (列表、图象、通项公式). 2.了解数列是自变量为正整数的一类特殊 函数. 以考查 Sn与 an的关系为主,简单的递推关系也 是考查的热点 本节内容在高考中以选择、 填空 的形式进行考查,难度属于低档. 1数列的定义 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项 2数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间 的大小关系 分类 递增数列 an1_an 其中。
3、 2.4 幂函数与二次函数幂函数与二次函数 最新考纲 考情考向分析 1.了解幂函数的概念 2.结合函数 yx,yx2,yx3,y1 x,y 1 2 x 的图象,了解它们的变化情况 3.理解并掌握二次函数的定义,图象及性质 4.能用二次函数,方程,不等式之间的关系解 决简单问题. 以幂函数的图象与性质的应用为主,常与 指数函数、对数函数交汇命题;以二次函 数的图象与性质的应用为主,常与方程、 不等式等知识交汇命题,着重考查函数与 方程,转化与化归及数形结合思想,题型 一般为选择、填空题,中档难度. 1幂函数 (1)幂函数的定义 一般地,形如 yx的函数称。
4、 8.5 直线直线、平面垂直的判定与性质平面垂直的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、 公理和定理为出发点, 认识和理解空间中线面垂直的有关性质与 判定定理. 2.能运用公理、定理和已获得的结论证明一 些空间图形的垂直关系的简单命题. 直线、平面垂直的判定及其性质是高考中的 重点考查内容,涉及线线垂直、线面垂直、 面面垂直的判定及其应用等内容题型主要 以解答题的形式出现,解题要求有较强的推 理论证能力,广泛应用转化与化归的思想. 1直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直。
5、 8.4 直线直线、平面平行的判定与性质平面平行的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、公理和定理为出发 点,认识和理解空间中线面平行的有关性 质与判定定理. 2.能运用公理、 定理和已获得的结论证明一 些有关空间图形的平行关系的简单命题. 直线、平面平行的判定及其性质是高考中的 重点考查内容,涉及线线平行、线面平行、 面面平行的判定及其应用等内容题型主要 以解答题的形式出现,解题要求有较强的推 理论证能力,广泛应用转化与化归的思想. 1线面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定 定理。
6、 13.2 直接证明与间接证明直接证明与间接证明 最新考纲 考情考向分析 1.了解直接证明的两种基本方法 分析法和综合法;了解分析法和综合 法的思考过程和特点. 2.了解反证法的思考过程和特点. 本节主要内容是直接证明的方法综合法和分析 法, 间接证明的方法反证法, 它常以立体几何中 的证明及相关选修内容中平面几何, 不等式的证明为 载体加以考查, 注意提高分析问题、 解决问题的能力; 在高考中主要以解答题的形式考查,难度中档. 1直接证明 (1)综合法 定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证。
7、 3.3 定积分与微积分基本定理定积分与微积分基本定理 最新考纲 考情考向分析 1.了解定积分的实际背景, 了解定积分的基本 思想,了解定积分的概念 2.了解微积分基本定理的含义. 利用定积分求平面图形的面积,定 积分的计算是高考考查的重点. 1定积分的概念 如果函数 f(x)在区间a,b上连续,用分点 ax0x1xi1xixnb,将区间a,b等 分成 n 个小区间,在每个小区间xi1,xi上任取一点 i(i1,2,n),作和式 n i1f(i)x n i1 ba n f(i),当 n时,上述和式无限接近某个常数,这个常数叫做函数 f(x)在区间a,b上 的定积分,记作 b af(x)dx,即 b af(x)。
8、 7.1 不等关系与不等式不等关系与不等式 最新考纲 考情考向分析 1.了解现实世界和日常生活中存在着 大量的不等关系. 2.了解不等式(组)的实际背景. 以理解不等式的性质为主, 本节在高考中主要以 客观题形式考查不等式的性质; 以主观题形式考 查不等式与其他知识的综合. 1两个实数比较大小的方法 (1)作差法 ab0ab ab0ab abb a b1ab a bbbb,bcac 可加性 abacbc 可乘性 ab c0 acbc 注意 c 的符号 ab cd acbd 同向同正可乘性 ab0 cd0 acbd 可乘方性 ab0anbn(nN,n1) a,b 同为正数 可开方性 ab0nanb(nN,n2) 3.不等式的一些常用性质 (1)倒数。
9、 3.2 导数的应用导数的应用 最新考纲 考情考向分析 1.了解函数单调性和导数的关系;能利用导数研 究函数的单调性, 会求函数的单调区间(其中多项 式函数一般不超过三次) 2.了解函数在某点取得极值的必要条件和充分条 件;会用导数求函数的极大值、极小值(其中多项 式函数一般不超过三次); 会求闭区间上函数的最 大值、最小值(其中多项式函数一般不超过三次) 3.会利用导数解决某些实际问题(生活中的优化 问题). 考查函数的单调性、 极值、 最值, 利用函数的性质求参数范围;与 方程、 不等式等知识相结合命题, 强化函数与方程思想、转化。
10、 2.6 对数与对数函数对数与对数函数 最新考纲 考情考向分析 1.理解对数的概念及其运算性质, 知道用换底 公式将一般对数转化成自然对数或常用对 数;了解对数在简化运算中的作用 2.理解对数函数的概念及其单调性, 掌握对数 函数图象通过的特殊点,会画底数为 2,3,10, 1 2, 1 3的对数函数的图象 3.体会对数函数是一类重要的函数模型 4.了解指数函数 yax(a0, 且 a1)与对数函 数 ylogax(a0,且 a1)互为反函数. 以比较对数函数值大小的形式考查函 数的单调性; 以复合函数的形式考查对 数函数的图象与性质,题型一般为选 择、填空题,中低。
11、第第 3 课时课时 导数与函数的综合问题导数与函数的综合问题 题型一题型一 导数与不等式导数与不等式 命题点 1 证明不等式 典例 (2017 贵阳模拟)已知函数 f(x)1x1 ex ,g(x)xln x. (1)证明:g(x)1; (2)证明:(xln x)f(x)1 1 e2. 证明 (1)由题意得 g(x)x1 x (x0), 当 00, 即 g(x)在(0,1)上为减函数,在(1,)上为增函数 所以 g(x)g(1)1,得证 (2)由 f(x)1x1 ex ,得 f(x)x2 ex , 所以当 00, 即 f(x)在(0,2)上为减函数,在(2,)上为增函数, 所以 f(x)f(2)11 e2(当且仅当 x2 时取等号) 又由(1)知 xln x1(当且仅当 x1 时取等号), 且等号。
12、 13.4 算法与程序框图算法与程序框图 最新考纲 考情考向分析 1.了解算法的含义,了解算法的思想 2.理解程序框图的三种基本逻辑结构: 顺序 结构、条件结构、循环结构. 3.了解几种基本算法语句输入语句、 输 出语句、赋值语句、条件语句、循环语句 的含义. 主要考查程序框图、 循环结构和算法思想, 并结 合函数与数列考查逻辑思维能力, 题型主要以选 择、 填空题为主, 考查求程序框图中的执行结果 和确定控制条件,难度为低中档. 1算法与程序框图 (1)算法 算法通常是指按照一定规则解决某一类问题的明确和有限的步骤 应用:算法通常可以。
13、 13.1 合情推理与演绎推理合情推理与演绎推理 最新考纲 考情考向分析 1.了解合情推理的含义,能进行简单的归纳推理和类 比推理,体会并认识合情推理在数学发现中的作用 2.了解演绎推理的含义,掌握演绎推理的“三段论”, 并能运用“三段论”进行一些简单推理 3.了解合情推理和演绎推理之间的联系和差异. 以理解类比推理、归纳推理和演绎推 理的推理方法为主,常以演绎推理的 方法根据几个人的不同说法作出推 理判断进行命题注重培养学生的推 理能力;在高考中以填空题的形式进 行考查,属于中、高档题. 1合情推理 (1)归纳推理 定义:由某。
14、 2.5 指数与指数函数指数与指数函数 最新考纲 考情考向分析 1.了解指数函数模型的实际背景 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌 握幂的运算 3.理解指数函数的概念及其单调性,掌握指数函数图象通 过的特殊点,会画底数为 2,3,10,1 2, 1 3的指数函数的图象 4.体会指数函数是一类重要的函数模型. 直接考查指数函数的图象与 性质; 以指数函数为载体, 考 查函数与方程、 不等式等交汇 问题, 题型一般为选择、 填空 题,中档难度. 1分数指数幂 (1)我们规定正数的正分数指数幂的意义是 m n anam(a0,m,nN*,且 n1)于是,。
15、 9.9 圆锥曲线的综合问题圆锥曲线的综合问题 最新考纲 考情考向分析 1.掌握解决直线与椭圆、 抛物线的位置关系的 思想方法 2.了解圆锥曲线的简单应用 3.理解数形结合的思想. 以考查直线与椭圆、双曲线、抛物线的位置 关系为背景,主要涉及弦长、中点、面积、 对称、存在性问题题型主要以解答题形式 出现,属于中高档题. 1直线与圆锥曲线的位置关系的判断 将直线方程与圆锥曲线方程联立,消去一个变量得到关于 x(或 y)的一元方程:ax2bxc 0(或 ay2byc0) (1)若 a0,可考虑一元二次方程的判别式 ,有 0直线与圆锥曲线相交; 0直线与圆锥曲线。
16、 9.3 圆的方程圆的方程 最新考纲 考情考向分析 掌握确定圆的几何要素,掌 握圆的标准方程与一般方程. 以考查圆的方程, 与圆有关的轨迹问题、最值问题也 是考查的热点,属中档题题型主要以选择、填空题 为主,要求相对较低,但内容很重要,有时也会在解 答题中出现. 圆的定义与方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程 标准式 (xa)2(yb)2r2(r0) 圆心为(a,b) 半径为 r 一般式 x2y2DxEyF0 充要条件:D2E24F0 圆心坐标: D 2, E 2 半径 r1 2 D2E24F 知识拓展 1确定圆的方程的方法和步骤 确定圆的方程主要方法是待定系。
17、 9.1 直线的方程直线的方程 最新考纲 考情考向分析 1.在平面直角坐标系中,结合具体图形,确定直线 位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的 直线斜率的计算公式. 3.掌握确定直线位置的几何要素,掌握直线方程的 几种形式(点斜式、斜截式、截距式、两点式及一般 式),了解斜截式与一次函数的关系. 以考查直线方程的求法为主,直线的 斜率、倾斜角也是考查的重点题型 主要在解答题中与圆、圆锥曲线等知 识交汇出现,有时也会在选择、填空 题中出现. 1直线的倾斜角 (1)定义:当直线 l 与 x 轴相交时,取 x 轴作为基准。
18、 9.6 双曲线双曲线 最新考纲 考情考向分析 了解双曲线的定义、几何图 形和标准方程,知道其简单 的几何性质(范围、对称性、 顶点、离心率、渐近线). 主要侧重双曲线的方程以及以双曲线方程为载体,研究参 数 a,b,c 及与渐近线有关的问题,其中离心率和渐近线 是重点以选择、填空题为主,难度为中低档一般不再 考查与双曲线相关的解答题,解题时应熟练掌握基础内容 及双曲线方程的求法,能灵活应用双曲线的几何性质. 1双曲线定义 平面内与两个定点 F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲 线这两个定点叫做双曲。
19、 2.8 函数与方程函数与方程 最新考纲 考情考向分析 结合二次函数的图象, 了解函数的零点与 方程根的联系, 判断一元二次方程根的存 在性及根的个数. 利用函数零点的存在性定理或函数的图象, 对函数是否存在零点进行判断或利用零点(方 程实根)的存在情况求相关参数的范围,是高 考的热点,题型以选择、填空为主,也可和 导数等知识交汇出现解答题,中高档难度. 1函数的零点 (1)函数零点的定义 对于函数 yf(x)(xD),把使 f(x)0 的实数 x 叫做函数 yf(x)(xD)的零点 (2)三个等价关系 方程 f(x)0 有实数根函数 yf(x)的图象与 x 轴有交点函数 。
20、 9.8 曲线与方程曲线与方程 最新考纲 考情考向分析 1.了解方程的曲线与曲线的方程的对应关系 2.了解解析几何的基本思想,利用坐标法研 究曲线的简单性质 3.能够根据所给条件选择适当的方法求曲线 的轨迹方程. 以考查曲线的轨迹、轨迹方程为主题型主 要以解答题的形式出现,题目为中档题,有 时也会在选择、填空题中出现. 1曲线与方程的定义 一般地,在直角坐标系中,如果某曲线 C(看作点的集合或适合某种条件的点的轨迹)上的点 与一个二元方程 f(x,y)0 的实数解建立如下的对应关系: 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲。