4.3三角函数的图象与性质 最新考纲1.能画出ysin x,ycos x,ytan x的图象,了解三角函数的周期性.2.借助图象理解正弦函数、余弦函数在0,2,正切函数在上的性质(如单调性、最大值和最小值、图象与x轴交点等) 1用五点法作正弦函数和余弦函数的简图 (1)在正弦函数ysinx,x0,2
高考数学一轮复习总教案2.7幂函数与函数的图象Tag内容描述:
1、4.3三角函数的图象与性质最新考纲1.能画出ysin x,ycos x,ytan x的图象,了解三角函数的周期性.2.借助图象理解正弦函数、余弦函数在0,2,正切函数在上的性质(如单调性、最大值和最小值、图象与x轴交点等)1用五点法作正弦函数和余弦函数的简图(1)在正弦函数ysinx,x0,2的图象中,五个关键点是:(0,0),(,0),(2,0)(2)在余弦函数ycosx,x0,2的图象中,五个关键点是:(0,1),(,1),(2,1)2正弦、余弦、正切函数的图象与性质(下表中kZ)函数ysinxycosxytanx图象定义域RRxk值域1,11,1R周期性22奇偶性奇函数偶函数奇函数递增区间2k,2k递减区。
2、4.3三角函数的图象与性质考情考向分析以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识题型既有填空题,又有解答题,中档难度1用五点法作正弦函数和余弦函数的简图(1)在正弦函数ysinx,x0,2的图象中,五个关键点是:(0,0),(,0),(2,0)(2)在余弦函数ycosx,x0,2的图象中,五个关键点是:(0,1),(,1),(2,1)2正弦、余弦、正切函数的图象与性质(下表中kZ)函数ysinxycosxytanx图象定义域。
3、5.3 两角和与差二倍角的三角函数两角和与差二倍角的三角函数 典例精析典例精析 题型一 三角函数式的化简 例 1化简 cos222 cos2 sin cos sin1 0. 解析因为 0,所以 022, 所以原式2 cos22 cos2 s。
4、课时规范练(授课提示:对应学生用书第 249 页)A 组 基础对点练1(2016高考全国卷 )函数 f(x)cos 2x6cos 的最大值为( B )(2 x)A4 B5C6 D72(2016高考浙江卷 )函数 ysin x 2 的图象是( D )3(2018蚌埠二模 )如图,已知函数 f(x)sin(x) 的图象与坐( 0,| 2)标轴交于 A(a,0),B ,C(0,c ),若| OA|2|OB|,则 c( D )(12,0)A B12 22C D33 32解析:由题意|OA|2|OB| ,B ,(12,0)|AB| ,即周期 T3,可得 ,函数 f(x)sin ,32 23 (23x )把 C(0,c)代入,可得 sin c0.把 B 代入,可得 sin 0. | ,(12,0) (3 ) 2 .则 csin .故选 D.3 ( 3) 324(2017西。
5、第 13 课时 一次函数的图象与性质 教学目标:教学目标:通过复习,查缺补漏,提升学生数学抽象水平,巩固数形结合思想,提高综合应试水平. 复习重点:复习重点:一次函数的图象 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: x轴交点坐标为 3 0 2 , ; 与轴交点坐标为y(03), 例 1.直线与32 xy ; 图象经过第 一、 三、 四 象 限。
6、第 15 课时 二次函数的图象与性质 教学目标:教学目标:通过复习,查缺补漏,提升学生数学抽象水平,巩固数形结合思想,提高综合应试水平. 复习重点:复习重点:用待定系数法求二次函数的解析式 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: 例 1.抛物线的顶点坐标是 2 6yxx 4(35),. 知识点:1.形如(a,b,c 是常数, 2 yaxbx。
7、 4.3 三角函数的图象与性质三角函数的图象与性质 最新考纲 考情考向分析 1.能画出 ysin x,ycos x,ytan x 的图象, 了解三角函数的周期性 2.理解正弦函数、 余弦函数在0,2上的性质 (如单调性、最大值和最小值,图象与 x 轴的 交点等),理解正切函数在区间 2, 2 内的 单调性. 以考查三角函数的图象和性质为主,题目涉 及三角函数的图象及应用、图象的对称性、 单调性、周期性、最值、零点考查三角函 数性质时,常与三角恒等变换结合,加强数 形结合思想、 函数与方程思想的应用意识 题 型既有选择题和填空题,又有解答题,中档 难度. 1用。
8、2.7 函数的图象,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.描点法作图 方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.,知识梳理,ZHISHISHULI,2.。
9、2.7函数的图象最新考纲1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题1描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象2图象变换(1)平移变换(2)对称变换yf(x)yf(x);yf(x)yf(x);yf(x)yf(x);yax (a0且a1)ylogax(a0且a1)(3)伸缩变换yf(x)yf(ax)yf(x)yaf(x)(4)翻折变换yf(x)y|f(x)|.yf(x)yf(|x|)概念方法微。
10、44 三角函数的图象与性质三角函数的图象与性质 教材梳理 1五点法作图 1在确定正弦函数 ysinx 在0,2上的图象形状时,起关键作用的五个点是, , 2在确定余弦函数 ycosx 在0,2上的图象形状时,起关键作用的五个点是, , 2周。
11、2.7函数的图象最新考纲考情考向分析1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.函数图象的辨析;函数图象和函数性质的综合应用;利用图象解方程或不等式,题型以选择题为主,中档难度.1描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象2图象变换(1)平移变换(2)对称变换yf(x)yf(x);yf(x)yf(x);yf(x)yf(x)。
12、 5.5 三角函数的图象和性质三角函数的图象和性质 典例精析典例精析 题型一 三角函数的周期性与奇偶性 例 1已知函数 fx2sin x4cos x4 3cos x2. 1求函数 fx的最小正周期; 2令 gxfx3,判断 gx的奇偶性. 。
13、 5.6 函数函数 yAsinx的图象和性质的图象和性质 典例精析典例精析 题型一 五点法作函数图象 例 1设函数 fxsin x 3cos x0的周期为 . 1求它的振幅初相; 2用五点法作出它在长度为一个周期的闭区间上的图象; 3说明函。
14、 2.7 函数的图象函数的图象 最新考纲 考情考向分析 1.在实际情境中, 会根据不同的需要选择图象 法、列表法、解析法表示函数 2.会运用函数图象理解和研究函数的性质, 解 决方程解的个数与不等式解的问题. 函数图象的辨析;函数图象和函数性 质的综合应用;利用图象解方程或不 等式,题型以选择题为主,中档难度. 1描点法作图 方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期 性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象 2图象变换 (1)平移变换 (2)对称变换 yf(x) 关于x轴对称 y。
15、27 函数的图象函数的图象 教材梳理 1利用描点法作图的步骤 1确定函数定义域; 2化简函数解析式; 3讨论函数的性质奇偶性单调性周期性最值等; 4描点并作出函数图象 2利用图象变换法作图的步骤 1平移变换 水平平移:yfx的图象向左平移 。
16、2.7 幂函数与函数的图象幂函数与函数的图象 典例精析典例精析 题型一 幂函数的图象与性质 例 1点 2,2在幂函数 fx的图象上,点2,14在幂函数 gx的图象上. 1求 fxgx的解析式; 2问当 x 为何值时,有:gxfx;fxgx;。