欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

高考数学一轮复习总教案3.1导数的应用一

第七章第七章 不等式不等式 高考导航高考导航 考试要求 重难点击 命题展望 1.不等关系 了解现实世界和日常生活中的不等关系,了解不等式组的实际背景. 2.一元二次不等式 1会从实际情境中抽象出一元二次不等式模型; 2通过函数图象了解一元二, 2.3 函数的奇偶性函数的奇偶性 典例精析典例精析 题型

高考数学一轮复习总教案3.1导数的应用一Tag内容描述:

1、第七章第七章 不等式不等式 高考导航高考导航 考试要求 重难点击 命题展望 1.不等关系 了解现实世界和日常生活中的不等关系,了解不等式组的实际背景. 2.一元二次不等式 1会从实际情境中抽象出一元二次不等式模型; 2通过函数图象了解一元二。

2、 2.3 函数的奇偶性函数的奇偶性 典例精析典例精析 题型一 函数奇偶性的判断 例 1判断下列函数的奇偶性. 1fxlg1x2x222; 2fx 解析1由得定义域为1,00,1, 这时 fxlg1x2x222lg1x2x2, 因为 fxlg。

3、33 利用导数研究函数的极值最值利用导数研究函数的极值最值 教材梳理 1函数的极值与导数 1判断 fx0是极大值,还是极小值的方法 一般地,当 fx00 时, 如果在 x0附近的左侧 fx0,右侧 fx0,那么 fx0是极大值; 如果在 x。

4、3.1导数的概念及运算最新考纲1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数yc(c为常数),yx,yx2,y的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数1导数与导函数的概念(1)一般地,函数yf(x)在xx0处的瞬时变化率是,我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|,即f(x0).(2)如果函数yf(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a。

5、2.2 函数的单调性函数的单调性 典例精析典例精析 题型一 函数单调性的判断和证明 例 1讨论函数 fxax1x2 a12在2,上的单调性. 解析设 x1,x2 为区间2,上的任意两个数且 x1x2, 则 fx1fx2ax11x12ax21。

6、32 利用导数研究函数的单调性利用导数研究函数的单调性 教材梳理 1函数的单调性与导数 1在某个区间a,b内,如果 fx0,那么函数 yfx在这个区间内;如果 fx0fxkk0,构造函数 gxfxkxb 2对于不等式 xfxfx0,构造函数。

7、7.4 基本不等式及应用基本不等式及应用 典例精析典例精析 题型一 利用基本不等式比较大小 例 11设 x,yR,且 xyxy1,则 A.xy2 21 B.xy2 21 C.xy2 212 D.xy 212 2已知 a,bR,则 ab,ab。

8、3.1导数的概念及运算最新考纲考情考向分析1.了解导数概念的实际背景2.通过函数图象直观理解导数的几何意义3.能根据导数定义求函数yc(c为常数),yx,yx2,yx3,y,y的导数4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为选择题或解答题的第(1)问,低档难度.1.平均变化率一般地,已知函数yf(x),x0,x1是其定义域内不同的两点,记xx1x0,yy1y0f(x1)f(x0)f(x0x)f(x0),则当x0时,商,称作函数yf(x)。

9、第三章 导数及其应用考试内容等级要求导数的概念A导数的几何意义B导数的运算B利用导数研究函数的单调性与极值B导数在实际问题中的应用B3.1导数的概念及运算考情考向分析导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为填空题或解答题的第(1)问,低档难度1导数的概念(1)函数yf(x)从x1到x2的平均变化率函数yf(x)从x1到x2的平均变化率为,若xx2x1,yf(x2)f(x1),则平均变化率可表示为.(2)设函数yf(x)在区间(a,b)上有定义,x0(a,b),当x无限趋近于0时,比值无限趋近于。

10、4.3 平面向量的数量积及向量的应用平面向量的数量积及向量的应用 典例精析典例精析 题型一 利用平面向量数量积解决模夹角问题 例 1 已知a,b 夹角为 120 ,且a4,b2,求: 1ab; 2a2b ab; 3a 与ab的夹角 . 解析。

11、5.8 三角函数的综合应用三角函数的综合应用 典例精析典例精析 题型一 利用三角函数的性质解应用题 例 1如图,ABCD 是一块边长为 100 m 的正方形地皮,其中 AST 是一半径为 90 m 的扇形小山, 其余部分都是平地.一开发商想。

12、2.9 函数模型及其应用函数模型及其应用 典例精析典例精析 题型一 运用指数模型求解 例 1按复利计算利率的一种储蓄,本金为 a 元,每期利率为 r,设本利和为 y,存期为 x,写出本利和 y 随期数 x 的变化函数式.如果存入本金 10 。

13、综合突破一综合突破一 导数的综合问题导数的综合问题 第第1课时课时 导数与函数零点导数与函数零点 2020四川达州高三模拟已知函数 fx2xcosxaaR 1求证:fx是增函数; 2讨论函数 gxx2axsinx 的零点个数 解:1证明: 。

14、 3.1 导数的概念及运算导数的概念及运算 最新考纲 考情考向分析 1.了解导数概念的实际背景 2.通过函数图象直观理解导数的几何意义 3.能根据导数定义求函数 yc(c 为常数), y x,yx2,yx3,y1 x,y x的导数 4.能利用基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数,(理)能求简 单的复合函数(仅限于形如 f(axb)的复合函 数)的导数. 导数的概念和运算是高考的必考 内容,一般渗透在导数的应用中 考查;导数的几何意义常与解析 几何中的直线交汇考查;题型为 选择题或解答题的第(1)问,低档 难度. 1导数与导函数的概念 (1)一般。

15、 6.5 数列的综合应用数列的综合应用 典例精析典例精析 题型一 函数与数列的综合问题 例 1已知 fxlogaxa0 且 a1,设 fa1,fa2,fannN是首项为 4,公差为2 的等差数列. 1设 a 是常数,求证:an成等比数列; 。

16、2.10 函数的综合应用函数的综合应用 典例精析典例精析 题型一 抽象函数的计算或证明 例 1已知函数 f x对于任何实数 x,y 都有 fxyfxy2fxfy,且 f00. 求证: fx是偶函数. 证明因为对于任何实数 xy 都有 fxy。

17、第三章 导数及其应用 考点要求考点要求 1导数概念及其几何意义 1了解导数概念的实际背景 2理解导数的几何意义 2导数的运算 1能根据导数定义求函数 yCC 为常数,yx,yx2,yx3,y1 x,y x的导数 2能利用给出的基本初等函数的。

18、3.33.3 导数的应用导数的应用 二二 典例精析典例精析 题型一 利用导数证明不等式 例 1已知函数 fx12x2ln x. 1求函数 fx在区间1,e上的值域; 2求证:x1 时,fx23x3. 解析1由已知 fxx1x, 当 x1,e。

19、第三章第三章 导数及其应用导数及其应用 高考导航高考导航 考试要求 重难点击 命题展望 1.导数概念及其几何意义 1了解导数概念的实际背景; 2理解导数的几何意义. 2.导数的运算 1能根据导数定义, 求函数 ycc 为常数, yx,yx2。

20、3.13.1 导数的应用导数的应用 一一 典例精析典例精析 题型一 求函数 fx的单调区间 例 1已知函数 fxx2axalnx1aR,求函数 fx的单调区间. 解析函数 fxx2axalnx1的定义域是1,. fx2xaax12xxa22。

【高考数学一轮复习总教案3.1导数的应用一】相关PPT文档
2022高考数学一轮总复习课件:3.3 利用导数研究函数的极值、最值
2022高考数学一轮总复习课件:3.2 利用导数研究函数的单调性
2022高考数学一轮总复习课件:综合突破一 导数的综合问题
2022高考数学一轮总复习课件:3.1 导数的概念及运算
【高考数学一轮复习总教案3.1导数的应用一】相关DOC文档
高考数学一轮复习总教案:7.1不等式的性质
高考数学一轮复习总教案:2.3函数的奇偶性
高考数学一轮复习总教案:2.2函数的单调性
高考数学一轮复习总教案:7.4基本不等式及应用
2020版高考数学大一轮复习 第三章 导数及其应用 3.1 导数的概念及运算
高考数学一轮复习总教案:4.3平面向量的数量积及向量的应用
高考数学一轮复习总教案:5.8三角函数的综合应用
高考数学一轮复习总教案:2.9函数模型及其应用
高考数学一轮复习学案:3.1 导数的概念及运算(含答案)
高考数学一轮复习总教案:6.5数列的综合应用
高考数学一轮复习总教案:2.10函数的综合应用
高考数学一轮复习总教案:3.3导数的应用二
高考数学一轮复习总教案:3.1导数的概念与运算
高考数学一轮复习总教案:3.1导数的应用一
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开