离散型随机变量的均值与方差 编稿:赵雷 审稿:李霞 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能
高考总复习知识讲解_随机抽样_基础Tag内容描述:
1、 离散型随机变量的均值与方差编稿:赵雷 审稿:李霞【学习目标】1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题;2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题;【要点梳理】要点一、离散型随机变量的期望1.定义:一般地,若离散型随机变量的概率分布为P则称 为的均值或数学期望,简称期望要点诠释:(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量。
2、 离散型随机变量及其分布列编稿:赵雷 审稿:李霞【学习目标】1了解离散型随机变量的概念2理解取有限个值的离散型随机变量及其分布列的概念3掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题4. 理解两个特殊的分布列:“两点分布”和“超几何分布”。【要点梳理】要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a试验可以在相同的情形下重复进行B试验的所有可能结果是明确可知的,并且不止一个c每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试。
3、随机事件的概率编稿:丁会敏审稿:王静伟【学习目标】1.了解必然事件,不可能事件,随机事件的概念;2.正确理解事件A出现的频率的意义;3.正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;4.通过实例了解互斥事件、对立事件的概念和实际意义,能根据二者概念辨别一些事件是否是互斥是否是对立,初步学会用互斥事件的概率加法公式计算一些事件的概率。【要点梳理】要点一:随机现象(1)必然现象在一定条件下必然发生某种结果的现象。(2)在相同的条件下多次观察同一现象,每次观察到的结果不一定。
4、高考总复习:随机事件及其概率编稿:孙永钊 审稿:张林娟【考纲要求】1、了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别;2、了解两个互斥事件的概率加法公式。【知识网络】概率随机事件的概率等可能事件的概率互斥事件的概率应用【考点梳理】知识点一、事件的有关概念1事件在一定条件下出现的某种结果。在一定的条件下,能否发生某一事件有三种可能:(1)在条件S下,一定会发生的事件,叫做相对于条件S的必然事件;(2)在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件;(3)在条件S下。
5、随机抽样编稿:丁会敏 审稿:【学习目标】1、了解简单随机抽样的概念,掌握实施简单随机抽样的常用方法:抽签法和随机数表法;2、了解系统抽样的意义,并会用系统抽样的方法从总体中抽取样本;3、了解分层抽样的概念与特征,清楚简单随机抽样、系统抽样、分层抽样的区别和联系.【要点梳理】要点一:简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.1、简单随机抽样的概念:一般地,从元素个数为N的总体中不放回地抽取容量为的样本,如果每一次抽取时。
6、随机抽样编稿:丁会敏 审稿:【学习目标】1、了解简单随机抽样的概念,掌握实施简单随机抽样的常用方法:抽签法和随机数表法;2、了解系统抽样的意义,并会用系统抽样的方法从总体中抽取样本;3、了解分层抽样的概念与特征,清楚简单随机抽样、系统抽样、分层抽样的区别和联系.【要点梳理】要点一、简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.1、简单随机抽样的概念:一般地,从元素个数为N的总体中不放回地抽取容量为的样本,如果每一次抽取时。