第二部分第二章第3讲 1(2019贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABC,请根据“SAS”基本事实作出DEF,使DEFABC 解:如图所示,DEF即为所求 2如图,利用尺规,在ABC的边AC上方作CAEACB,在射线AE上截取ADBC,连接CD,并证明:CDAB(尺规作图
高三数学二轮复习解答题突破练2Tag内容描述:
1、第二部分第二章第3讲1(2019贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABC,请根据“SAS”基本事实作出DEF,使DEFABC解:如图所示,DEF即为所求2如图,利用尺规,在ABC的边AC上方作CAEACB,在射线AE上截取ADBC,连接CD,并证明:CDAB(尺规作图要求保留作图痕迹,不写作法)解:如图所示因为EACACB,所以ADCB因为ADBC,所以四边形ABCD是平行四边形所以ABCD3如图,在RtABC中,B90,A30,AC2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D;(保留作图痕迹,不写作法)(2)若ADE的周长为a,先化简T(a1)2a(a1),再求T的。
2、第二章 解答题(一)突破6分题,第3讲 尺规作图综合题,第二部分 专题突破,3,一、线段的垂直平分线 【典例1】如图,在ABC中,C90,ACBC,D为BC上一点,且到A,B两点的距离相等 (1)用直尺和圆规,作出点D的位置;(不写作法,保留作图痕迹) (2)连接AD,若B37,求CAD的度数 【思路点拨】用尺规作图作线段AB的垂直平分线交BC于点D即可,方法突破,4,解:(1)如图,点D即为所求 (2)在RtABC中,B37, CAB53. 又ADBD, BADB37. CAD533716.,【方法归纳】尺规作图有五种基本作图:(1)作一条线段等于已知线段;(2)作已知角的角平分线;(3)作线段的垂直平分。
3、第二部分第四章第1讲1(2018淮安)如图,在平面直角坐标系中,一次函数ykxb的图象经过点A(2,6),且与x轴相交于点B,与正比例函数y3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)若点D在y轴负半轴上,且满足SCODSBOC,求点D的坐标解:(1)当x1时,y3x3,点C的坐标为(1,3)将A(2,6),C(1,3)代入ykxb中,得,解得.(2)由(1)知,一次函数的解析式为yx4.当y0时,有x40,解得x4,点B的坐标为(4,0)设点D的坐标为(0,m)(m0)SCODSBOC,即m43,解得m4.点D的坐标为(0,4)2(2019安徽模拟)如图,反比例函数y的图象与一次函数yx的图象交于A,B两点(点。
4、第四章 解答题(三)突破10分题,第1讲 函数综合题,第二部分 专题突破,3,方法突破,一、待定系数法 【典例1】已知一次函数图象经过点(3,5),(4,9)两点 (1)求一次函数解析式; (2)求这个一次函数图象和x轴、y轴的交点坐标 【思路点拨】(1)设函数解析式为ykxb,利用待定系数法可求得k,b的值,可求得一次函数解析式;(2)分别令x0和y0,可求得图象与y轴和x轴的交点坐标,4,【方法归纳】用待定系数法求函数解析式是必须掌握的一种方法,要熟练掌掌握解二次一次方程组的解法,5,6,7,8,9,【思路点拨】(1)由反比例函数图象在第一象限可得2k1满足的条。
5、高考解答题的审题与答题示范(三) 数列类解答题审结构审 题 方 法 结构是数学问题的搭配形式,某些问题已知的数式结构中常常隐含着某种特殊的关系审视结构要对结构进行分析、加工和转化,以实现解题突破典例(本题满分 12 分)已知 an为等差数列,前 n 项和为 Sn(nN *), bn是首项为 2 的等比数列,且公比大于 0, b2 b312, b3 a42 a1, S1111 b4.(1)求 an和 bn的通项公式;(2)求数列 a2nb2n1 的前 n 项和( nN *).审题路线(1)要求 an和 bn的通项公式需求 an的首项 a1和公差 d; bn的首项 b1和公比 q.(2)由(1)知 a2nb2n1 (3 n1)4 n分析 a2nb2。
6、第二部分第四章第2讲1(2019广东)如图1,在ABC中,ABAC,O是ABC的外接圆,过点C作BCDACB交O于点D,连接AD交BC于点E,延长DC至点F,使CFAC,连接AF.(1)求证:EDEC;(2)求证:AF是O的切线;(3)如图2,若点G是ACD的内心,BCBE25,求BG的长解:(1)证明:ABAC,BACBBCDACB,BBCD,BDBCDDEDEC(2)证明:如图所示,连接AO并延长交O于点G,连接CG.由(1)得BBCD,ABDF.ABAC,CFAC,ABCF.四边形ABCF是平行四边形CAFACBAG为直径,ACG90,即GGAC90.GB,BACB,ACBGAC90.CAFGAC90,即OAF90.点A在O上,AF是O的切线。
7、第四章 解答题(三)突破10分题,第2讲 圆的综合题,第二部分 专题突破,3,一、与全等相结合 【典例1】(2018广东)如图,四边形ABCD中,ABADCD,以AB为直径的O经过点C,连接ACOD交于点E. (1)求证:ODBC; (2)若tanABC2,求证:DA与O相切; (3)在(2)条件下,连接BD交O于点F,连接EF,若BC1,求EF的长,方法突破,4,5,6,7,8,9,【方法归纳】切线的判定主要有两条途径:1.圆心到直线的距离等于半径;2.证明直线经过圆的半径的外端,并且垂直于这条半径(注意:若无切点,作垂直证半径;若有切点,连线证垂直)在综合题的解答过程中一般会涉及直角三角形。
8、第二部分第二章第2讲1先化简,再求值:(2x)(2x)(x1)(x5),其中x.解:原式4x2x24x54x1.当x时,原式415.2(2018嘉兴)化简并求值:,其中a1,b2.解:原式ab.当a1,b2时,原式121.3(2019永州)先化简,再求值:,其中a2.解:1.当a2时,原式1.4先化简,再求值:3,其中a.解:原式3a3.当a时,原式3.5(2019娄底)先化简,再求值:.其中a1,b1.解:ab.当a1,b1时,原式(1)(1)1.6先化简,再求值:,其中a1.解:原式.当a1时,原式1.7(2019黄石)先化简,再求值。
9、第二章 解答题(一)突破6分题,第2讲 化简求值,第二部分 专题突破,3,方法突破,4,【方法归纳】整式的化简求值往往要用到平方差、完全平方或整式的乘法等进行化简,然后再进行加减的运算,化到最简后才进行代入求值,5,6,7,【方法归纳】化简求值往往要用到因式分解,也就是要用到提公因式法和公式法,然后再进行加减乘除的约分,化到最简后才进行代入求值,8,9,随堂练习,。
10、(二二)数数 列列 1.(2019 全国)已知各项均为正数的等比数列an的前 4 项和为 15,且 a53a34a1,则 a3 等于( ) A.16 B.8 C.4 D.2 答案 C 解析 设等比数列an的公比为 q,由 a53a34a1得 q43q24,得 q24,因为数列an 的各项均为正数,所以 q2,又 a1a2a3a4a1(1qq2q3)a1(1248)15,所 以 a11,所以 a3a1q24. 2.(2019 榆林模拟)在等差数列an中,其前 n 项和为 Sn,且满足 a3S512,a4S724,则 a5S9等于( ) A.24 B.32 C.40 D.72 答案 C 解析 a3S56a312,a4S78a424, a32,a43,a54, a5S910a540. 3.(2019 肇庆检测)记 Sn为等差数列an的前 n 项和,公。
11、 典例 2 (12 分)(2018 全国)已知数列an满足 a11,nan12(n1)an.设 bnan n . (1)求 b1,b2,b3; (2)判断数列bn是否为等比数列,并说明理由; (3)求an的通项公式. 审题路线图 1将题目中的递推公式变形写出 an1的表达式分别令 n1,2,3求得 b1,b2,b3 2将题目中的递推公式变形得到 an1 n12 an n 根据 bnan n 得到 bn12bn根据等比数列 的定义判定 3由2求得 bn进而求得 an 规 范 解 答 分 步 得 分 构 建 答 题 模 板 解 (1)由条件可得 an12n1 n an, 将 n1 代入得 a24a1, 又 a11, a24,即 b22,1 分 将 n2 代入得 a33a2, a312,即 b34,2 。
12、(三三)立体几何与空间向量立体几何与空间向量 1.(2019 哈尔滨第三中学模拟)如图所示,在四棱台 ABCDA1B1C1D1中,AA1底面 ABCD, 四边形 ABCD 为菱形,BAD120 ,ABAA12A1B12. (1)若 M 为 CD 中点,求证:AM平面 AA1B1B; (2)求直线 DD1与平面 A1BD 所成角的正弦值. (1)证明 四边形 ABCD 为菱形,BAD120 ,连接 AC,则ACD 为等边三角形, 又M 为 CD 中点,AMCD, 由 CDAB,得 AMAB. AA1底面ABCD, AM底面ABCD, AMAA1, 又ABAA1A, AB, AA1平面AA1B1B, AM平面 AA1B1B. (2)四边形 ABCD 为菱形,BAD120 ,ABAA12A1B12, DM1,AM 3,AMDBAM90。
13、(七七)坐标系与参数方程坐标系与参数方程 1.已知在平面直角坐标系 xOy 中,直线 l 的参数方程是 x 2 2 t, y 2 2 t4 2 (t 为参数),以原点 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2cos 4 . (1)判断直线 l 与曲线 C 的位置关系; (2)设 M 为曲线 C 上任意一点,求 xy 的取值范围. 解 (1)由 x 2 2 t, y 2 2 t4 2, 消去 t,得直线 l 的普通方程为 yx4 2. 由 2cos 4 , 得 2cos cos 42sin sin 4 2cos 2sin . 2 2cos 2sin , 即 x2 2xy2 2y0. 化为标准方程得 x 2 2 2 y 2 2 21. 圆心坐标为 2 2 , 2 2 ,半径为 1. 圆。
14、70 分分 解答题标准练解答题标准练(三三) 1.ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 1 2bsin C cos Asin Acos C,a2. (1)求 A; (2)求ABC 的面积的最大值. 解 (1)因为 1 2bsin C cos Asin Acos C, 所以1 2bcos Asin Ccos Asin Acos Csin(AC) sin B,所以bcos A 2sin B1, 由正弦定理得 b sin B a sin A 2 sin A, 所以bcos A 2sin B 2cos A 2sin A1,sin Acos A, 又 A(0,),所以 A 4. (2)由余弦定理 a2b2c22bccos A 得, b2c2 2bc4, 因为 b2c22bc. 所以 2bc42bc, 解得 bc2(2 2), 所以 SABC1 2bcsin A 2 4 bc 2 4 2(2 2) 21.。
15、70 分分 解答题标准练解答题标准练(四四) 1.已知在ABC 中,角 A,B,C 所对的边分别为 a,b,c,cos(2B2C)3cos A10,且 ABC 的外接圆的直径为 2. (1)求角 A 的大小; (2)若ABC 的面积为 2 3,求ABC 的周长; (3)当ABC 的面积取最大值时,判断ABC 的形状. 解 (1)由题意知 2A2B2C2,所以 cos(2B2C)3cos A1cos 2A3cos A10, 即 2cos2A3cos A20, 解得 cos A2(舍去)或 cos A1 2. 又 00 恒成立, 则 x1x2 4k 2k21,x1x2 2 2k21. 所以 xx1x2 2 2k 2k21, yk 2k 2k21 1 1 2k21, 两式联立,得 x22y22y0(y0). 又(0,0)适合上式, 故弦 PQ 的中点 M 。
16、 70 分分 解答题标准练解答题标准练(一一) 1.(2019 广州模拟)已知an是等差数列,且 lg a10,lg a41. (1)求数列an的通项公式; (2)若 a1,ak,a6是等比数列bn的前 3 项,求 k 的值及数列anbn的前 n 项和. 解 (1)数列an是等差数列,设公差为 d, 且 lg a10,lg a41. 则 a11, a13d10, 解得 d3, 所以 an13(n1)3n2. (2)若 a1,ak,a6是等比数列bn的前 3 项, 则 a2ka1 a6, 根据等差数列的通项公式得到 ak3k2, 代入上式解得 k2;a1,a2,a6是等比数列bn的前 3 项,a11,a24, 所以等比数列bn的公比为 q4. 由等比数列的通项公式得到 bn4n 1.。
17、(八八)不等式选讲不等式选讲 1.(2019 天水市第一中学模拟)设函数 f(x)|2xa|x2|(xR,aR). (1)当 a1 时,求不等式 f(x)0 的解集; (2)若 f(x)1 在 xR 上恒成立,求实数 a 的取值范围. 解 (1)a1 时,f(x)0 可得|2x1|x2|,即(2x1)2(x2)2, 化简得:(3x3)(x1)0,所以不等式 f(x)0 的解集为(,1)(1,). (2)当 a0),求4 a 1 b的取值范围. 解 (1)由 f(x)1, 即|2x1|1,得12x11, 解得1x0. 即不等式的解集为x|1x0. (2)g(x)f(x)f(x1)|2x1|2x1| |2x1(2x1)|2, 当且仅当(2x1)(2x1)0, 即1 2x 1 2时取等号, m2. ab2(a,b0), 4 a 1 b 1 2(ab) 4 a 1 b 。
18、(四四)概率与统计概率与统计 1.随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流 量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求, 准备推出一款流量 包.该通信公司选了 5 个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的 定价方案作为试点, 经过一个月的统计, 发现该流量包的定价 x(单位: 元/月)和购买人数 y(单 位:万人)的关系如表: 流量包的定价(元/月) 30 35 40 45 50 购买人数(万人) 18 14 10 8 5 (1)根据表中的数据,运用相关系数进行分析说明,是否可以。
19、70 分分 解答题标准练解答题标准练(二二) 1.(2019 南昌模拟)在ABC 中, 内角 A, B, C 的对边分别为 a, b, c, 已知cos A2cos C cos B 2ca b . (1)求sin C sin A的值; (2)若 cos B1 4,b2,求ABC 的面积. 解 (1)由正弦定理,得2ca b 2sin Csin A sin B , 所以cos A2cos C cos B 2sin Csin A sin B , 即(cos A2cos C)sin B(2sin Csin A)cos B, cos Asin B2cos Csin B2sin Ccos Bsin Acos B, cos Asin Bsin Acos B2sin Ccos B2cos Csin B. 化简得 sin(AB)2sin(BC), 又 ABC,所以 sin C2sin A, 因此sin C sin A2. (2)由sin C sin A。
20、(二二)数数 列列 1.(2019 蚌埠质检)已知数列an满足:a11,an12ann1. (1)设 bnann,证明:数列bn是等比数列; (2)设数列an的前 n 项和为 Sn,求 Sn. (1)证明 数列an满足:a11,an12ann1. 由 bnann,那么 bn1an1n1, bn 1 bn an 1n1 ann 2ann1n1 ann 2; 即公比 q2,b1a112, 数列bn是首项为 2,公比为 2 的等比数列. (2)解 由(1)可得 bn2n, ann2n, 数列an的通项公式为 an2nn, 数列an的前 n 项和为 Sn212222332nn (21222n)(123n) 2n 12n 2 2 n 2. 2.已知数列an,a11,a23,且满足 an2an4(nN*). (1)求数列an的通项公式; (2)若数列bn满足 。