欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

高斯小学奥数六年级上册含答案第14讲 工程问题综合提高

第二十六讲 应用题综合 本讲知识点汇总: 与生活相关的形式多样的应用题,需要结合实际情况具体分析;条件比较隐晦,数 量关系较为复杂的应用题;具有不确定性,需要进行简单判断的应用题 具有多种可能情况,需要进行分类讨论的问题;需要进行合理安排对策,以达到最 佳效果的问题 例1 如图表格是 2013 年最

高斯小学奥数六年级上册含答案第14讲 工程问题综合提高Tag内容描述:

1、第二十六讲 应用题综合 本讲知识点汇总: 与生活相关的形式多样的应用题,需要结合实际情况具体分析;条件比较隐晦,数 量关系较为复杂的应用题;具有不确定性,需要进行简单判断的应用题 具有多种可能情况,需要进行分类讨论的问题;需要进行合理安排对策,以达到最 佳效果的问题 例1 如图表格是 2013 年最新的整存整取的利率表: 李老师有 10000 元钱,他存入银行,整存两年后取出,到时本息一共有多少钱?假设李 老师存一年后, 将本息再存入, 两年后李老师有多少钱?哪种方式两年后得的钱多一些? 分析分析=利息 本金 年利率 时间,。

2、第五讲 进位制问题 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 2 3 6 7 10 11 14 15 18 19 22 23 26 27 30 31 34 35 38 39 42 43 46 47 50 51 54 55 58 59 62 63 66 67 70 71 74 75 78 79 82 83 86 87 90 91 94 95 98 99 102 103 106 107 110 111 114 115 118 119 122 123 126 127 4 5 6 7 12 13 14 15 20 21 22 23 28 29 30 31 36 37 38 39 44 45 46 47 52 53 54 55。

3、第十八讲 最值问题二 一、最值问题中的常用方法 a) 极端思考 在分析某些最值问题时,可以考虑把问题推向“极端” ,因为当某 一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问 题的“本来面目”清楚地显露出来,从而使问题迅速获解 b) 枚举比较 根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步 缩小范围,筛选比较出题目的答案 c) 分析推理 根据两个事物在某些属性上都相同, 猜测它们在其他属性上也有可 能相同的推理方法 d) 构造调整 在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取 得出奇制胜。

4、第二讲 计算综合二 到了六年级,我们对四则运算提出了新的要求,考试中出现的经常是比较复杂的分数四则混合 运算题目,因而要求有较强的计算基本功在计算的同时,综合运用以前学过的各种巧算技巧,往 往能使题目的计算过程变得简洁当然现在的巧算技巧不再像以前那么直接,而是蕴藏在计算的细 节之中 练习 1 计算: 431 1.274.19 12 2143 计算: 541 3.8512.3 13 1854 分析分析把除号变乘号,带分数化为假分数计算的时候,多留意观察,看看有没有哪些步 骤能够用到巧算 例题 1 计算: 59 1935.22 1993 0.41.6 910 527 1995 0.51995 1965.22。

5、第十一讲 间隔发车问题 间隔发车问题的关键点是“两车之间的距离不变” ,可以用相等距离连一些小物体 来体会车队的等距离前进这类问题中最重要的是理解“每隔 n 分钟与一辆车相遇”的 含义,理解的越透彻,越有助于解决问题另外间隔发车问题的题目一般比较长,注意 仔细、耐心、认真读题,务必分析清楚题意,之后再进行下一步的解题 本讲知识点汇总: 一般间隔发车问题中, 车速和发车时间固定, 所以每两辆车之间的距离固定, 记住以下图片: 一般来说,题目中会有以下条件: “每隔 x 分和一辆车相遇” ,它的意思是在和某辆车相 遇开。

6、第十二讲 复杂行程问题 这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、 优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解它们都 是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各 种分析方法有比较好的掌握,并能够将它们综合运用 本讲知识点汇总: 一 扶梯问题 1 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成 2 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带 人走的路程” ,所以在解题时通常需要把路程分拆 3 解题时注意比例法的应用 二 优化配。

7、第六讲 取整问题 第一格:阿呆一手拿着剪刀,一手挠着头看着地上的绳子,心想: “我要把绳子截成一米长 的小段,应该怎么截呢?”地上有一根绳子,标明这根绳子长五米 第二格:阿呆蹲在地上,拿着剪刀的手已经剪在了这根绳子的中点处 第三格:阿呆疑惑的想: “现在还能截出多少个一米长的小段?” 教学目标 1 了解取整符号的概念和性质; 2 了解带有取整符号类的数列的变化区间; 3 学会求取整数列的值; 4 学会求解关于取整符号的方程; 知识点概述 一 基本概念:表示不大于 x 的最大整数,通常叫做 x 的整数部分, ,通常叫做 x 的小。

8、第九讲 几何综合问题 这一讲我们学习几何综合题,题型是复杂而巧妙的这种问题往往需要 我们有点武侠小说中“借力打力”的能力,不要硬碰硬,而是借巧劲比如 已知一个面积为 2 的正方形,求边长为其两倍的正方形的面积把边长具体 数值求出来,用边长的关系来计算面积的想法是不可行的而且事实上也是 没必要的,我们可以把面积为 2 的正方形边长设为a,它的两倍为2a,则 2 2a ,以2a为边长的正方形面积为 2 2244 28aaa 我们再来看 几个用类似想法解决的问题 本讲知识点汇总: 一、 巧用面积公式,利用图形面积之间的和差关系来求解图形面积 。

9、第二十五讲 几何超越提高 本讲知识点汇总: 一、 常用的几何模型(请在下面的横线上写上适当的字母或数字) 1 等高三角形:等高三角形:面积比等于底的比 2 共角三角形:共角三角形: 3 沙漏沙漏模型模型: 4 梯形梯形中的比例关系:中的比例关系: 5 一般四边形中的比例关系:一般四边形中的比例关系: B C A D O 1 S 2 S 3 S 4 S 在梯形 ABCD 中,已知 ADa BCb ,则 1234 :_:_:_:_SSSS 已知 AB/CD,则有 D C O A B _:_=_:_ b a S2 S1 a b S2 S1 a b S2 S1 S1 a S2 b A B C D E A C D B E A B C D E = ADE ABC S S 6 燕尾模型燕尾模型 7 。

10、第三讲 分数计算综合提高 本讲知识点汇总: 一、 分数计算技巧 1. 凑整 2. 分组 3. 提取公因数 4. 约分(整体约分) 二、 分数与循环小数互化 1. 分数化循环小数 2. 循环小数化分数 三、 比较与估算 四、 分数裂项 五、 分数数列、数表 例1 (1) 3333 9999991 4444 ; (2) 12399 234100 ; (3) 222 111 (1) (1)(1) 2399 ; (4) 111222989899 231003410099100100 分析分析大家还记得凑整、分组、约分等巧算方法吗? 练习 1、 111222181819 23203420192020 例2 (1) 1919191901901900190019 9898989809809800980098 ; (2) 166566。

11、第十七讲 整数型计算综合提高 一、多位数计算 1 凑整、凑 9 的思想; 2 数字和问题:与一个小于它的数相乘,积的数字和是 9n 二、等差数列 1 等差数列的“配对”思想; 2 求和公式: (1) ; (2) 3 项数公式: 4 第 n 项: 三、等比数列: 等比数列“错位相减”法求和,基本步骤是: (1)设等比数列的和为 S; (2)等式两边同时乘以公比(或者公比的倒数) ; (3)两式对应的项相减,消去同样的项,求出结果; 四、基本公式 1 平方差公式 2 平方求和 3 立方求和 五、整数裂项 1 ; 2 123 1 2 32 3 43 4 512 4 nnnn nnn 12 1 22 33 4。

12、第十五讲 数论综合提高一 本讲知识点汇总: 一一 整除 1 整除的定义 如果整数 a 除以整数 b ,所得的商是整数且没有余数,我们就说 a 能被 b 整除,也可以说 b 能整除 a,记作 如果除得的结果有余数,我们就说 a 不能被 b 整除,也可以说 b 不整除 a 2 整除判定 (1) 尾数判断法 能被 2、5 整除的数的特征:个位数字能被 2 或 5 整除; 能被 4、25 整除的数的特征:末两位能被 4 或 25 整除; 能被 8、125 整除的数的特征:末三位能被 8 或 125 整除 (2) 截断求和法 能被 9、99、999 及其约数整除的数的特征 (3) 截断求差法 能被 11。

13、第十六讲 数论综合提高二 本讲知识点汇总: 一、约数、倍数 1 基本概念 (1) 如果 a 能被 b 整除(也就是) ,则 b 是 a 的约数(因数) ,a 是 b 的倍数; (2) 约数具有“配对”性质:大约数对应小约数 2 约数个数 (1) 分解质因数,指数加 1 再相乘; (2) 平方数有奇数个约数,非平方数有偶数个约数 3 约数和公式 (1) 如果一个数的质因数分解式为, 则约数和为 ; (2) 如 果 一 个 数 的 质 因 数 分 解 式 为, 则 约 数 和 为 ; 二、公约数、公倍数 1 基本概念 (1) 如果 a 是若干个数公有的约数, 则称 a 是它们的公约数。

14、第一讲 浓度与经济问题综合提高 本讲知识点汇总: 一、 基本公式 1 浓度问题 ; ; 2 经济问题 ; ; ; 注:浓度的范围是 0%100%,利润率可以超过 100% 二、 基本方法 1 不变量法 2 十字交叉法 例如: 200 克 20%的 A 溶液与 400 克 50%的 B 溶液混合, 可以得到 600 克 40%的溶液,此时有以下关系: 此时左边的重量比等于右边的浓度差之比,即 3 列表法 例1 要把 600 克浓度为 95%的酒精,稀释成浓度为 75%的消毒酒精,需要加入多少克蒸馏 水? (2)要配制 180 克 20%的硫酸溶液,需要 16%和 22%的硫酸溶液各多少克? 200:40010%:20% 2。

15、第十九讲 计数综合提高上 一、 枚举法 1、简单枚举 2、分类枚举 3、特殊的枚举:标数法、树形图 二、 加法原理分类 如果完成一件事有几类方式, 在每一类方式中又有不同的方法, 那么把每类的方法 数相加就得到所有的方法数 加法原理的类与类之间会满足下列要求: (1)只能选择其中的某一类,而不能几类同时选; (2)类与类之间可以相互替代,只需要选择某一类就可以满足要求 三、 乘法原理分步 如果完成一件事分为几个步骤, 在每一个步骤中又有不同的方法, 那么把每步的方 法数相乘就得到所有的方法数 乘法原理的步与步之间满足下列要求。

16、第二十讲 计数综合提高下 一、上楼梯模型 找寻每种情况与前面若干种情况之间的关系 二、几何图形分平面增量分析 考虑每次增加一个图形时,所增加的平面数,在分析问题时,要注意以下几点: 1. 交点越多越好; 2. 交点多决定段数多(两种情况,即封闭图形和不封闭图形) ; 3. 有几段则增加几部分(有直线要先画直线) 三、传球法 1. 传球法是树形图的简化版本; 2. 传球规则决定累加规则; (1)首先从传球者角度考虑传球方法; (2)其次从接球者角度考虑如何累加; 3. 可以使用传球法的题型; (1)对相邻数位上的数字大小有要求的计数。

17、第二十三讲 行程问题超越提高 一、 基本行程、相遇与追及: 1. 行程问题的基本公式: 2. 相遇问题: ; 3. 追及问题: ; 二、 火车问题: 1. 火车过桥: ; 2. 火车过人问题: (1) 人站立不动:过人的速度为火车本身的速度,路程为火车的车长 (2) 人迎向火车:过人的速度为人与火车的速度之和,路程为火车的车长 (3) 人背向火车:过人的速度为火车与人的速度之差,路程为火车的车长 3. 火车错车问题: (1) 快车追上并超过慢车:路程差等于两车的车长之和 (2) 两车相遇并错车:路程和等于两车的车长之和 三、 流水行船问题: ;。

18、第四讲 曲线形问题综合提高 本讲知识点汇总: 一、 基本曲线形计算 1. 圆:2 Crd ; 22 2 44 dC Sr 2. 扇形:2 360 n lr ; 2 3 6 02 nlr Sr 3. 圆柱体:VSh 底 4. 圆锥体: 1 3 VSh 底 二、 曲线形计算技巧: 1. 割补法 2. 平移、旋转 3. 重叠(容斥) 例1 (1)如图 1,有一个长是 10、宽是 6 的长方形,那么两个阴影部分的面积之差为多 少?( 取 3.14) (2)如图 2,三角形 ABC 是直角三角形,AB 长 40 厘米,以 AB 为直径做半圆,阴影 部分比阴影部分的面积小 28 平方厘米求 AC 的长度 ( 取 3.14) 分析分析 (1)阴影是不规则图形。

19、第二讲 余数问题综合提高 本讲知识点汇总: 一 求余数 1 直接做除法 2 特征求余(注意和整除特征对比) ; 3 替换求余 4 周期求余 5 分解求余 二 物不知数问题(求被除数) 1 也称“韩信点兵” ,关于它的解法,后人总结出“中国剩余定理” (也 称“孙子定理” ) 物不知数问题的基本解法是:逐步增加条件,逐步找寻 2 分解求余 三 同余 1 概念 如果 a 和 b 除以 c 的余数相同,则称 a、b 对 c 同余,例如:10 和 28 对 9 同余 2 如果 a、b 对 c 同余,则是 c 的倍数 例1 (1)418 814 1616除以 7、8、9、11 的余数分别是多少? (2) 89。

20、第十四讲 工程问题综合提高 本讲知识点汇总: 1. 工程问题基本公式: 工作量=工作效率 工作时间; 工作时间=工作量 工作效率; 工作效率=工作量 工作时间 2. 理解“单位 1”的概念并灵活应用; 3. 有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔细梳理工 作过程、灵活运用基本数量关系; 工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量 典型题型 1. 基本效率计算:最常见的工程问题,基本思路是根据工作过程计算效率,通过对效 率的分析计算时间 (1) 基本工程问题:关键在于效率的计算; (2) 中。

【高斯小学奥数六年级上册含答案第14讲 工程问题综合提高】相关DOC文档
高斯小学奥数六年级上册含答案第26讲 应用题综合
高斯小学奥数六年级上册含答案第05讲 进位制问题
高斯小学奥数六年级上册含答案第18讲 最值问题二
高斯小学奥数六年级上册含答案第02讲 计算综合二
高斯小学奥数六年级上册含答案第11讲 间隔发车问题
高斯小学奥数六年级上册含答案第12讲 复杂行程问题
高斯小学奥数六年级上册含答案第06讲 取整问题
高斯小学奥数六年级上册含答案第09讲 几何综合
高斯小学奥数六年级上册含答案第25讲 几何超越提高
高斯小学奥数六年级下册含答案第03讲_分数计算综合提高
高斯小学奥数六年级上册含答案第17讲 整数型计算综合提高
高斯小学奥数六年级上册含答案第15讲 数论综合提高一
高斯小学奥数六年级上册含答案第16讲 数论综合提高二
高斯小学奥数六年级下册含答案第01讲 浓度与经济问题综合提高
高斯小学奥数六年级上册含答案第19讲 计数综合提高上
高斯小学奥数六年级上册含答案第20讲 计数综合提高下
高斯小学奥数六年级上册含答案第23讲 行程问题超越提高
高斯小学奥数六年级下册含答案第04讲_曲线形问题综合提高
高斯小学奥数六年级下册含答案第02讲_余数问题综合提高
高斯小学奥数六年级上册含答案第14讲 工程问题综合提高
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开