第二十二 分数、百分数应用题综合提高 一、 基础知识回顾: 1. 比: (1)比的概念:两个数相除叫做两个数的比比例如,56 可记作 5:6 “:”是 比号,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项,前项除以后项所 得的商叫做比值比值比的后项不能为 0 (2)比的性质:比的前项和后
高斯小学奥数六年级上册含答案第17讲 整数型计算综合提高Tag内容描述:
1、第二十二 分数、百分数应用题综合提高 一、 基础知识回顾: 1. 比: (1)比的概念:两个数相除叫做两个数的比比例如,56 可记作 5:6 “:”是 比号,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项,前项除以后项所 得的商叫做比值比值比的后项不能为 0 (2)比的性质:比的前项和后项都乘以或除以一个不为零的数,比值不变 2. 比例基本性质: 如果:a bc d,那么adbc 3. 正比例关系和反比例关系: (1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种 量相对应的两个数的比值(也就是商)一定,这两。
2、第十五讲 数论综合提高一 本讲知识点汇总: 一一 整除 1 整除的定义 如果整数 a 除以整数 b ,所得的商是整数且没有余数,我们就说 a 能被 b 整除,也可以说 b 能整除 a,记作 如果除得的结果有余数,我们就说 a 不能被 b 整除,也可以说 b 不整除 a 2 整除判定 (1) 尾数判断法 能被 2、5 整除的数的特征:个位数字能被 2 或 5 整除; 能被 4、25 整除的数的特征:末两位能被 4 或 25 整除; 能被 8、125 整除的数的特征:末三位能被 8 或 125 整除 (2) 截断求和法 能被 9、99、999 及其约数整除的数的特征 (3) 截断求差法 能被 11。
3、第十六讲 数论综合提高二 本讲知识点汇总: 一、约数、倍数 1 基本概念 (1) 如果 a 能被 b 整除(也就是) ,则 b 是 a 的约数(因数) ,a 是 b 的倍数; (2) 约数具有“配对”性质:大约数对应小约数 2 约数个数 (1) 分解质因数,指数加 1 再相乘; (2) 平方数有奇数个约数,非平方数有偶数个约数 3 约数和公式 (1) 如果一个数的质因数分解式为, 则约数和为 ; (2) 如 果 一 个 数 的 质 因 数 分 解 式 为, 则 约 数 和 为 ; 二、公约数、公倍数 1 基本概念 (1) 如果 a 是若干个数公有的约数, 则称 a 是它们的公约数。
4、第十九讲 计数综合提高上 一、 枚举法 1、简单枚举 2、分类枚举 3、特殊的枚举:标数法、树形图 二、 加法原理分类 如果完成一件事有几类方式, 在每一类方式中又有不同的方法, 那么把每类的方法 数相加就得到所有的方法数 加法原理的类与类之间会满足下列要求: (1)只能选择其中的某一类,而不能几类同时选; (2)类与类之间可以相互替代,只需要选择某一类就可以满足要求 三、 乘法原理分步 如果完成一件事分为几个步骤, 在每一个步骤中又有不同的方法, 那么把每步的方 法数相乘就得到所有的方法数 乘法原理的步与步之间满足下列要求。
5、第十四讲 工程问题综合提高 本讲知识点汇总: 1. 工程问题基本公式: 工作量=工作效率 工作时间; 工作时间=工作量 工作效率; 工作效率=工作量 工作时间 2. 理解“单位 1”的概念并灵活应用; 3. 有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔细梳理工 作过程、灵活运用基本数量关系; 工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量 典型题型 1. 基本效率计算:最常见的工程问题,基本思路是根据工作过程计算效率,通过对效 率的分析计算时间 (1) 基本工程问题:关键在于效率的计算; (2) 中。
6、第二十讲 计数综合提高下 一、上楼梯模型 找寻每种情况与前面若干种情况之间的关系 二、几何图形分平面增量分析 考虑每次增加一个图形时,所增加的平面数,在分析问题时,要注意以下几点: 1. 交点越多越好; 2. 交点多决定段数多(两种情况,即封闭图形和不封闭图形) ; 3. 有几段则增加几部分(有直线要先画直线) 三、传球法 1. 传球法是树形图的简化版本; 2. 传球规则决定累加规则; (1)首先从传球者角度考虑传球方法; (2)其次从接球者角度考虑如何累加; 3. 可以使用传球法的题型; (1)对相邻数位上的数字大小有要求的计数。
7、第二讲 计算综合二 到了六年级,我们对四则运算提出了新的要求,考试中出现的经常是比较复杂的分数四则混合 运算题目,因而要求有较强的计算基本功在计算的同时,综合运用以前学过的各种巧算技巧,往 往能使题目的计算过程变得简洁当然现在的巧算技巧不再像以前那么直接,而是蕴藏在计算的细 节之中 练习 1 计算: 431 1.274.19 12 2143 计算: 541 3.8512.3 13 1854 分析分析把除号变乘号,带分数化为假分数计算的时候,多留意观察,看看有没有哪些步 骤能够用到巧算 例题 1 计算: 59 1935.22 1993 0.41.6 910 527 1995 0.51995 1965.22。
8、第三讲 分数计算综合提高 本讲知识点汇总: 一、 分数计算技巧 1. 凑整 2. 分组 3. 提取公因数 4. 约分(整体约分) 二、 分数与循环小数互化 1. 分数化循环小数 2. 循环小数化分数 三、 比较与估算 四、 分数裂项 五、 分数数列、数表 例1 (1) 3333 9999991 4444 ; (2) 12399 234100 ; (3) 222 111 (1) (1)(1) 2399 ; (4) 111222989899 231003410099100100 分析分析大家还记得凑整、分组、约分等巧算方法吗? 练习 1、 111222181819 23203420192020 例2 (1) 1919191901901900190019 9898989809809800980098 ; (2) 166566。
9、第十七讲 整数型计算综合提高 一、多位数计算 1 凑整、凑 9 的思想; 2 数字和问题:与一个小于它的数相乘,积的数字和是 9n 二、等差数列 1 等差数列的“配对”思想; 2 求和公式: (1) ; (2) 3 项数公式: 4 第 n 项: 三、等比数列: 等比数列“错位相减”法求和,基本步骤是: (1)设等比数列的和为 S; (2)等式两边同时乘以公比(或者公比的倒数) ; (3)两式对应的项相减,消去同样的项,求出结果; 四、基本公式 1 平方差公式 2 平方求和 3 立方求和 五、整数裂项 1 ; 2 123 1 2 32 3 43 4 512 4 nnnn nnn 12 1 22 33 4。