1.3三角函数的诱导公式(二)第一章三角函数学习目标1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题.2.对诱导公式一至六,能作综合归纳,体会出六组公章末复习课第一章三角函数学习目标1.理解任意角的三角函数的概念.2.掌握同角三角函数基本关系及诱导公式.3.能画出ysinx,y
高中三角函数Tag内容描述:
1、12.2同角三角函数关系学习目标1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明知识点同角三角函数的基本关系式1同角三角函数的基本关系式(1)平方关系:sin2cos21.(2)商数关系:tan .2同角三角函数基本关系式的变形(1)sin2cos21的变形公式sin21cos2;cos21sin2.(2)tan 的变形公式sin cos_tan_;cos .1sin2cos21.()提示在同角三角函数的基本关系式中要注意是“同角”才成立,即sin2cos21.2sin2cos21.()提示在sin2cos21中,令可得s。
2、1.2任意角的三角函数12.1任意角的三角函数第1课时任意角的三角函数学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号知识点一任意角的三角函数前提如图,设是一个任意角,P(x,y)是它的终边上任意一点定义正弦比值叫做的正弦,记作sin ,即sin 余弦比值叫做的余弦,记作cos ,即cos 正切比值(x0)叫做的正切,记作tan ,即tan 三角函数正弦、余弦、正切都是以角为自变量,以角的终边上点的坐标的比值为函数值的函。
3、? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 槡 ? ? ? 槡 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 。
4、高中数学考点12 三角函数的基本概念、同角三角函数的基本关系与诱导公式1了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2理解正弦函数、余弦函数、正切函数的定义.3理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.一、角的有关概念1定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形2分类(1)按旋转方向不同分为正角、负角、零角(2)按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合3象限角与轴线角第一象限角的集合为;第二象限。
5、高中数学专题07 三角函数及其性质【母题原题1】【2019年高考天津卷文数】已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为若,则A2BCD2【答案】C【解析】为奇函数,;的最小正周期为,又,故选C【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数,结合函数性质逐步得出的值即可【母题原题2】【2018年高考天津卷文数】将函数的图象向右平移个单位长度,所得图象对应的函数A在区间上单调递增B在区间上单调递减C在区间上单调递增D在区间上单调递减。
6、高中数学考点13 三角函数的图象与性质1理解正弦函数的图象与性质.2理解余弦函数的图象与性质.3理解正切函数的图象与性质.4了解三角函数的周期性.5了解函数的实际意义,掌握的图象,了解参数A,对函数图象变化的影响.一、正弦函数,余弦函数,正切函数的图象与性质函数图象定义域值域最值当时,;当时,当时,;当时,既无最大值,也无最小值周期性最小正周期为最小正周期为最小正周期为奇偶性,奇函数,偶函数,奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心;对称轴,既是中心对称图形又是。
7、2020高中数学专题05三角函数考纲解读三年高考分析1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出,a的正弦、余弦、正切的诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间0,2上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间内的单调性.(4)理解同角三角函数的基本关系式:sin2x+cos2x=1,=tanx.(5)了解函数y=Asin(wx+j)的。
8、1.2.1 三角函数的定义,第一章 1.2 任意角的三角函数,学习目标 1.理解任意角的三角函数的定义. 2.掌握三角函数在各个象限的符号. 3.掌握正弦、余弦、正切函数的定义域.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 任意角的三角函数,角的正弦、余弦、正切分别等于什么?,答案,使锐角的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PMx轴于M,设P(x,y),|OP|r.,思考2,对确定的锐角,sin ,cos ,tan 的值是否随P点在终边上的位置的改变而改变?,答案,答案 不会.因为三角函数值是比值,其大小与点P(x。
9、章末复习课,第一章 三角函数,学习目标 1.理解任意角的三角函数的概念. 2.掌握三角函数诱导公式. 3.能画出ysin x,ycos x,ytan x的图像. 4.理解三角函数ysin x,ycos x,ytan x的性质. 5.了解函数yAsin(x)的实际意义,掌握函数yAsin(x)图像的变换.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.任意角三角函数的定义 在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y叫做的 ,记作 ,即 ; (2)x叫做的 ,记作 ,即 ; (3) 叫做的 ,记作 ,即 .,tan ,正弦,sin ,sin y,余弦,cos ,cos x,正切,2.诱导公。
10、3 二倍角的三角函数(一),第三章 三角恒等变形,学习目标 1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式. 2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 二倍角公式,思考1,二倍角的正弦、余弦、正切公式就是用的三角函数表示2的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?,答案,答案 sin 2sin()sin cos cos sin 2sin cos ; cos 2cos()cos cos sin sin cos2sin2。
11、3 二倍角的三角函数(二),第三章 三角恒等变形,学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 半角公式,我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2替换,结果怎样?,答案,思考1,思考2,答案,思考3,利用tan 和倍角公式又能得到tan 与sin ,cos 有怎样的关系?,。
12、1 同角三角函数的基本关系,第三章 三角恒等变形,学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式. 2.理解同角三角函数的基本关系式. 3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 同角三角函数的基本关系式,思考1,计算下列式子的值: (1)sin230cos230; (2)sin245cos245; (3)sin290cos290. 由此你能得出什么结论?尝试证明它.,答案,答案 3个式子的值均为1. 由此可猜想: 对于任意角,有sin2cos21,下面用三角函数的定义证明: 设角的终边与。
13、第一章 三角函数,9 三角函数的简单应用,学习目标 1.会用三角函数解决一些简单的实际问题. 2.体会三角函数是描述周期变化现象的重要函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 利用三角函数模型解释自然现象,现实世界中的周期现象可以用哪种数学模型描述?,答案,答案 三角函数模型.,在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化.,梳理,(1)利用三角函数模型解决实际问题的一般步骤: 第一步:阅读理解,审清题意. 读题。
14、章末复习课,第1章 三角函数,学习目标 1.理解任意角的三角函数的概念. 2.掌握同角三角函数基本关系及诱导公式. 3.能画出ysin x,ycos x,ytan x的图象. 4.理解三角函数ysin x,ycos x,ytan x的性质. 5.了解函数yAsin(x)的实际意义,掌握函数yAsin(x)图象的变换.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.任意角三角函数的定义 在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y叫做的 ,记作 ,即 ; (2)x叫做的 ,记作 ,即 ; (3) 叫做的 ,记作 ,即 .,tan ,正弦,sin ,sin y,余弦,cos ,cos x,。
15、1.3.1 三角函数的周期性,第1章 1.3 三角函数的图象和性质,学习目标 1.了解周期函数、周期、最小正周期的定义. 2.理解函数ysin x,ycos x,ytan x都是周期函数,都存在最小正周期. 3.会求函数yAsin(x)及yAcos(x)的周期.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 周期函数,思考,单摆运动、时钟的圆周运动、四季变化等,都具有周期性变化的规律,对于正弦、余弦函数是否也具有周期性?请说明你的理由.,答案 由单位圆中的三角函数线可知,正弦、余弦函数值的变化呈现出周期现象.每当角增加(或减少)2,所得角的终边与原来角的终。
16、1.2.2 同角三角函数关系,第1章 1.2 任意角的三角函数,学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式. 2.理解同角三角函数的基本关系式. 3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 同角三角函数的基本关系式,思考1,计算下列式子的值: (1)sin230cos230; (2)sin245cos245; (3)sin290cos290. 由此你能得出什么结论?尝试证明它.,答案,答案 3个式子的值均为1.由此可猜想: 对于任意角,有sin2cos21,下面用三角函数的定义证明: 设角的终。
17、第2课时 三角函数线,第1章 1.2.1 任意角的三角函数,学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 有向线段,思考1,比如你从学校走到家和你从家走到学校,效果一样吗?,答案 不一样.,思考2,如果你觉得效果不同,怎样直观的表示更好?,答案 用有向线段AB和BA表示较好.,答案,有向线段 (1)有向线段:规定了 (即规定了起点和终点)的线段称为有向线段. (2)有向直。
18、1.6 三角函数模型的简单应用,第一章 三角函数,学习目标 1.会用三角函数解决一些简单的实际问题. 2.体会三角函数是描述周期变化现象的重要函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 利用三角函数模型解释自然现象,现实世界中的周期现象可以用哪种数学模型描述?,答案,答案 三角函数模型.,在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化.,(1)利用三角函数模型解决实际问题的一般步骤: 第一步:阅读理解,审清题意. 读。
19、章末复习课,第一章 三角函数,学习目标 1.理解任意角的三角函数的概念. 2.掌握同角三角函数基本关系及诱导公式. 3.能画出ysin x,ycos x,ytan x的图象. 4.理解三角函数ysin x,ycos x,ytan x的性质. 5.了解函数yAsin(x)的实际意义,掌握函数yAsin(x)图象的变换.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.任意角三角函数的定义 在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y叫做的 ,记作 ,即 ; (2)x叫做的 ,记作 ,即 ;(3) 叫做的 ,记作 ,即 .,正弦,sin ,sin y,余弦,cos ,cos x,正切,t。
20、1.3 三角函数的诱导公式(二),第一章 三角函数,学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力. 3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 诱导公式五,由此可得诱导公式五,cos ,sin ,思考,知识点二 诱导公式六,能否利用已有公式得出 的正弦、余弦与角的正弦、余弦之间的关系?,答案,答案 以代替公。