第3讲 二项式定理 基础达标 1(2019金华十校期末调研)在(x24)5的展开式中,含x6的项的系数为() A20B40 C80D160 解析:选D.Tr1C(x2)5r(4)r(4)rCx102r, 令102r6,解得r2, 所以含x6的项的系数为(4)2C160. 2(2019台州高三期末考试
巩固练习_高考总复习二项式定理提高Tag内容描述:
1、第3讲 二项式定理基础达标1(2019金华十校期末调研)在(x24)5的展开式中,含x6的项的系数为()A20B40C80D160解析:选D.Tr1C(x2)5r(4)r(4)rCx102r,令102r6,解得r2,所以含x6的项的系数为(4)2C160.2(2019台州高三期末考试)已知在()n的展开式中,第6项为常数项,则n()A9B8C7D6解析:选D.因为第6项为常数项,由C()n5()5()n5Cxn6,可得n60,解得n6.故选D.3(2019温州市普通高中模考)在的展开式中,各项系数和与二项式系数和之比为64,则x3的系数为()A15B45C135D405解析:选C.由题意64,n6,Tr1Cx6r3rCx6,令63,r2,32C135.4(2019湖州市高三期末。
2、【巩固练习】1某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是()A0.18B0.28C0.37 D0.482.如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()(A)0.960 (B)0.864 (C)0.720 (D)0.5763.甲、乙两市都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天的条件下,乙市也为雨天的概率为()(A)0.6 (B)0.7 (C)0.8 (D。
3、92 二项式定理二项式定理 教材梳理 1二项式定理 abnnN, 这个公式所表示的规律叫做二项式定 理abn的二项展开式共有项, 其中各项的系数k0, 1, 2, , n叫做二项式系数,式中的叫做二项展开式的通项,用 Tk1表示,即 通项为。
4、12.3 二项式定理二项式定理 典例精析典例精析 题型一 二项展开式的通项公式及应用 例 1 已知的展开式中,前三项系数的绝对值依次成等差数列. 1求证:展开式中没有常数项; 2求展开式中所有的有理项. 解析由题意得 2C1 n 1C2 n。
5、二项式定理编稿:赵雷 审稿:李霞【学习目标】1理解并掌握二项式定理,了解用计数原理证明二项式定理的方法2会用二项式定理解决与二项展开式有关的简单问题【要点梳理】要点一:二项式定理1.定义一般地,对于任意正整数,都有:(),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做的二项展开式。式中的做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:,其中的系数(r=0,1,2,n)叫做二项式系数,2二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为,最。
6、高考总复习:二项式定理编稿:孙永钊 审稿:张林娟【考纲要求】1能用计数原理证明二项式定理;2掌握二项展开式系数的性质及计算的问题;3会用二项式定理解决与二项展开式有关的简单问题.【知识网络】【考点梳理】要点一、二项式定理公式叫做二项式定理。其中叫做二项式系数。叫做二项展开式的通项,它表示第项。其中: 公式右边的多项式叫做的二项展开式;展开式中各项的系数叫做二项式系数;式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为.要点诠释:二项展开式的通项公式集中体现了二项展开式中的指数、项数、系数。
7、二项式定理编稿:赵雷 审稿:李霞【学习目标】1理解并掌握二项式定理,了解用计数原理证明二项式定理的方法2会用二项式定理解决与二项展开式有关的简单问题【要点梳理】要点一:二项式定理1.定义一般地,对于任意正整数,都有:(),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做的二项展开式。式中的做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:,其中的系数(r=0,1,2,n)叫做二项式系数,2二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为,最。
8、高考总复习:二项式定理编稿:孙永钊 审稿:张林娟【考纲要求】1能用计数原理证明二项式定理;2掌握二项展开式系数的性质及计算的问题;3会用二项式定理解决与二项展开式有关的简单问题.【知识网络】【考点梳理】要点一、二项式定理公式叫做二项式定理。其中叫做二项式系数。叫做二项展开式的通项,它表示第项。其中: 公式右边的多项式叫做的二项展开式;展开式中各项的系数叫做二项式系数;式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为.要点诠释:二项展开式的通项公式集中体现了二项展开式中的指数、项数、系数。
9、【巩固练习】1在的二项展开式中,x2的系数为 ()AB. C D. 2 (xR)展开式中的常数项是 ()A20 B15C15 D203.的展开式中项的系数是( )A B C D4在二项式的展开式中,各项系数之和为A,各项二项式系数之和为B,且AB72,则展开式中常数项的值为 ()A6 B9C12 D185若n是奇数,则被9除的余数是 ( )A0B2 C7D86在的展开式中,的系数等于 ( )ABCD7若 的值为 ( )A0B2C1 D18展开式中x的系数是_9在的展。
10、【巩固练习】1.若,则的值是( )A84 B.-84 C.280 D.-2802在二项式(x2x1)(x1)5的展开式中,含x4项的系数是 ()A25 B5C5 D253在的展开式中,只有第5项的二项式系数最大,则展开式中常数项是()A7 B28C7 D284如果的展开式中所有奇数项的系数和等于512,则展开式的中间项是ABCD5若a0a1xa2011x2011(xR),则的值为 ()A2 B0C1 D26若xR,nN ,定义x(x1)(x2)(xn1),例如(5)(4)(3)(2)(1)120,则函数的奇偶性为A是偶函数而不是奇函数 B是奇函数而不是偶函数C既是奇函数又是偶函数D既不是奇函数又不是偶函数7若的展。