第6讲 离散型随机变量及其分布列 基础达标 1设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X0)等于() A0B CD 解析:选C.设X的分布列为 X 0 1 P p 2p 即“X0”表示试验失败,“X1”表示试验成功由p2p1,得p,故应选C. 2(2019绍兴调
巩固练习_高考总复习离散型随机变量及其分布列均值与方差Tag内容描述:
1、第6讲 离散型随机变量及其分布列基础达标1设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X0)等于()A0BCD解析:选C.设X的分布列为X01Pp2p即“X0”表示试验失败,“X1”表示试验成功由p2p1,得p,故应选C.2(2019绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,则下列概率中等于的是()AP(X2)BP(X2)CP(X4)DP(X4)解析:选C.X服从超几何分布,P(Xk),故k4,故选C.3设随机变量Y的分布列为Y123Pm则“Y”的概率为()ABCD解析:选C.依题意知,m1,则m.故PP(。
2、课时规范练(授课提示:对应学生用书第 329 页)A 组 基础对点练1某中学根据 20052017 年期间学生的兴趣爱好,分别创建了“摄影” “棋类”“国学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2017 年某新生入学,假设他通过考核选拔进入该校的“摄影” “棋类”“国学”三个社团的概率依次为 m,n,已知三个社团他都能进入的概率为 ,13 124至少进入一个社团的概率为 ,且 mn.34(1)求 m 与 n 的值;(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修学分 1 分,对进入“棋类”社的同学增加。
3、11.6离散型随机变量的均值与方差考情考向分析以理解均值与方差的概念为主,考查二项分布的均值与方差掌握均值与方差的求法是解题关键高考中常以解答题的形式考查,难度为中档1均值(1)若离散型随机变量X的概率分布为Xx1x2xnPp1p2pn则称E(X)x1p1x2p2xnpn为X的均值或数学期望(2)离散型随机变量的均值反映了离散型随机变量取值的平均水平(3)均值的性质E(c)c,E(aXb)aE(X)b(a,b,c为常数)2方差(1)若离散型随机变量X所有可能的取值是x1,x2,xn,且这些值的概率分别是p1,p2,pn,则称:V(X)(x1)2p1(x2)2p2(xn)2pn为X的方差(2),叫标准差(3)方。
4、12.3离散型随机变量的分布列及均值、方差最新考纲1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.2.通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用.3.通过实例,理解取有限值的离散型随机变量的均值、方差的概念能计算简单离散型随机变量的均值、方差,并能解决一些实际问题1离散型随机变量的分布列(1)随着试验结果变化而变化的变量叫做随机变量所有取值可以一一列出的随机变量叫做离散型随机变量(2)一般地,若离散型随机变量X可能取的不同值为x1,。
5、94 离散型随机变量的分布列均值与方差离散型随机变量的分布列均值与方差 教材梳理 1离散型随机变量的概念 1随机变量 如果随机试验的结果可以用一个随着试验结果变化而变化的变量来表示,那么这样的变 量叫做,随机变量常用字母 X,Y, , 等表。
6、高考总复习:离散型随机变量及其分布列、期望与方差编稿:孙永钊 审稿:张林娟【考纲要求】一、离散型随机变量及其分布列(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;(2)理解超几何分布及其导出过程,并能进行简单的应用。二、离散型随机变量的均值与方差(1)理解取有限个值的离散型随机变量均值、方差的概念;(2)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。随机变量离散型随机变量分布列均值方差【知识网络】【考点梳理】考点一、离散型随机变量及其分布列一、。
7、【巩固练习】1某射手射击所得环数X的分布列为:X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数大于7”的概率为()A0.28B0.88C0.79 D0.512甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩环数78910频数5555乙的成绩环数78910频数6446丙的成绩环数78910频数4664分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有() 3一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X4)的值为()A. B. C. D.。