5.25.2 导数的运算导数的运算 5 5. .2.12.1 基本初等函数的导数基本初等函数的导数 学习目标 1.能根据定义求函数 yc,yx,yx2,y1 x,y x的导数.2.能利用给出的基 本初等函数的导数公式求简单函数的导数 知识点一 几个常用函数的导数 原函数 导函数 f(x)c f(x)
函数的概念与基本初等函数2含答案Tag内容描述:
1、5.25.2 导数的运算导数的运算 5 5. .2.12.1 基本初等函数的导数基本初等函数的导数 学习目标 1.能根据定义求函数 yc,yx,yx2,y1 x,y x的导数.2.能利用给出的基 本初等函数的导数公式求简单函数的导数 知识点一 几个常用函数的导数 原函数 导函数 f(x)c f(x)0 f(x)x f(x)1 f(x)x2 f(x)2x f(x)x3 f(x)3x2 f(x)1 。
2、 5.2 导数的运算导数的运算 5.2.1 基本初等函数的导数基本初等函数的导数 1下列求导运算正确的是( ) A(cos x)sin x B(x3)x3ln x C(ex)xex 1 D(ln x) 1 xln 10 答案 A 2下列各式中正确的个数是( ) (x7)7x6;(x 1)x2;(5 x2) 3 5 2 ; 5 x (cos 2)sin 2. A2 B3 C4 D5 答案 A。
3、单元训练金卷高三数学卷(B )第 2 单 元 函 数 的 概 念 、 性 质 与 初 等 函 数注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题。
4、单元训练金卷高三数学卷(A)第 2 单 元 函 数 的 概 念 、 性 质 与 初 等 函 数注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 。
5、第 2 讲 基本初等函数、函数与方程及函数的应用年份 卷别 考查内容及考题位置 命题分析卷 函数的零点问题 T9卷 指数型函数图象的识别 T32018卷 对数的运算及不等式性质 T12卷指数与对数的互化、对数运算、比较大小 T112017卷 函数的零点问题 T11卷幂函数、指数函数、对数函数的单调性、比较大小 T82016卷指数函数与幂函数的单调性、比较大小 T61.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,一般出现在第 511 题的位置,有时难度较大2函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国课标卷考查较少。
6、微专题一多元变量的最值问题经验分享在数学中经常碰到求含有多个变量的最值问题,此类题目题型众多,解法也很多,学生在面对含有多个变量的问题时,最大的困扰是不知从何处入手对于高中生,主要掌握的是一元变量的最值问题因此,解决多元变量的最值问题,减元是常见的办法一、代入减元例1设x,yR,且2x8yxy0,求xy的最小值解由2x8yxy0得y,因为x,yR,所以x8,所以xyxxx2(x8)1021018,当且仅当x8,即x12时,取“”号所以,当x12,y6时,xy取得最小值18.点评此题是一道学生经常见到的求多变量最值的试题,虽然此解法不是最优的解法,但可能。
7、微专题一 多元变量的最值问题,第二章 函数概念与基本初等函数,经验分享 在数学中经常碰到求含有多个变量的最值问题,此类题目题型众多,解法也很多,学生在面对含有多个变量的问题时,最大的困扰是不知从何处入手.对于高中生,主要掌握的是一元变量的最值问题.因此,解决多元变量的最值问题,减元是常见的办法.,一、代入减元 例1 设x,yR,且2x8yxy0,求xy的最小值.,所以,当x12,y6时,xy取得最小值18.,点评 此题是一道学生经常见到的求多变量最值的试题,虽然此解法不是最优的解法,但可能是学生比较容易想到的解法.它的优点是由前面的。
8、第3讲 函数的奇偶性、对称性基础达标1(2019舟山市普陀三中高三期中)下列函数既是奇函数,又在(0,)上单调递增的是()Ayx2Byx3Cylog2xDy3x解析:选B.A.函数yx2为偶函数,不满足条件B函数yx3为奇函数,在(0,)上单调递增,满足条件Cylog2x的定义域为(0,),为非奇非偶函数,不满足条件D函数y3x为非奇非偶函数,不满足条件2(2019衢州高三年级统一考试)已知f(x)是R上的奇函数,当x0时,f(x)x3ln(1x),则当x0时,f(x)()Ax3ln(1x)Bx3ln(1x)Cx3ln(1x)Dx3ln(1x)解析:选C.当x0,f(x)(x)3ln(1x),因为f(x)是R上的奇函数,所以当x0时,f(x)f(x)(x)3ln。
9、2.3函数的奇偶性与周期性最新考纲1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性1函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x。