7正切函数71正切函数的定义72正切函数的图像与性质基础过关1已知sintan0,那么角是()A第一或第二象限角B第二或3指数函数第1课时指数函数的图像与性质基础过关1指数函数yf(x)的图像经过点,那么f(4)f(2)()A8B16C1考纲要求命题趋势1理解一次函数的概念,会利用待定系数法确定一次
函数的图像Tag内容描述:
1、反比例函数的图像与性质一、选择题1.下列函数中,反比例函数是( )A. y=x1 B. y= C. y= D. y=2.下列各点在反比例函数 的图象上的是( )A. (-1 ,-2) B. (-1,2) C. (-2,-1 ) D. (2 ,1)3.已知 y1=mx(m0),y 2= (k0),当 x=1 时,y 1=y2 , 当 x=2 时,y 1=y2+9,当 x=3 时,y 1y2 值为( )A. 3 B. 12 C. 16 D. 214.已知反比例函数 y= , 下列结论不正确的是( )A. 图象必经过。
2、第22章:二次函数,人教版九年级上册,22.1 二次函数的图像和性质,22.1.1 二次函数,学习目标,1.理解二次函数的概念,会根据给出的函数解析式判断其是否为二次函数。 2.通过探索具体问题中的数量关系和变化规律,体会二次函数是刻画现实世界中数量关系的一个有效的数学模型。 3.会列出实际问题中的二次函数关系,并能够确定其自变量的取值范围。,在某变化过程中的两个变量x、y,当变量x在某个范围内取一个确定的值,另一个变量y总有唯一的值与它对应。这样的两个变量之间的关系我们把它叫做函数关系。对于上述变量x 、y,我们把y叫x的函数。 。
3、53对数函数的图像和性质第1课时对数函数的图像和性质基础过关1函数yax与ylogax(a0,a1)在同一坐标系中的图像形状可能是()解析函数ylogax恒过定点(1,0),排除B;当a1时,yax是增函数,ylogax是减函数,当0bcBcbaCcabDacb解析ylogax的图像在(0,)上是上升的,所以底数a1,函数ylogbx,ylogcx的图像在(0,)上都是下降的,因此b,c(0,1),又易知cb,故acb.答案D3函数yloga(2x3)1的图像恒过定点P,则点P的坐标是()A(2,1) B(2,0)C(2,1) D(1,1)解析当2。
4、5正弦函数的图像与性质5.1正弦函数的图像学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线的步骤和方法,能用“五点法”作出简单的正弦曲线知识点一几何法作正弦函数的图像利用正弦线,这种作图方法称为“几何法”,其基本步骤如下:作出单位圆:作直角坐标系,并在直角坐标系中y轴左侧的x轴上取一点O1,作出以O1为圆心的单位圆;等分单位圆,作正弦线:从O1与x轴的交点A起,把O1分成12等份过O1上各分点作x轴的垂线,得到对应于0,2等角的正弦线;找横坐标:把x轴上从0到2这一段分成12等份;找纵坐标:把。
5、6余弦函数的图像与性质学习目标1.会用“五点法”“图像变换法”作余弦函数的图像.2.理解余弦函数的性质,会求yAcos xB的单调区间及最值.3.会利用余弦函数的单调性比较三角函数值的大小,能根据图像解简单的三角不等式知识点一余弦函数的图像余弦函数ycos x(xR)的图像叫作余弦曲线思考类比“五点法”作正弦函数图像,那么余弦函数图像能否用“五点法”作图?若能,ycos x,x0,2五个关键点分别是什么?答案能,五个关键点分别是(0,1),(,1),.知识点二余弦函数的性质函数ycos x定义域R图像值域1,1奇偶性偶函数周期性以2k为周期(kZ,k0),2。
6、5正弦函数的图像与性质5.1正弦函数的图像一、选择题1以下对正弦函数ysin x的图像描述不正确的是()A在x2k,2(k1)(kZ)上的图像形状相同,只是位置不同B介于直线y1与直线y1之间C关于x轴对称D与y轴仅有一个交点考点正弦函数的图像题点正弦函数图像的应用答案C解析画出ysin x的图像(图略),根据图像可知A,B,D三项都正确2若函数ysin(x)的图像过点,则的值可以是()A. B. C D答案C解析将点代入ysin(x),可得k,kZ,所以k,kZ,只有选项C满足3函数y的图像是()答案C解析由y|sin x|易知该函数为偶函数,当sin x0时,ysin x,当sin x0时,ysin x,作。
7、6余弦函数的图像与性质基础过关1函数ycos x|cos x|,x0,2的大致图像为()解析由题意得y显然只有D合适答案D2若f(x)cos x在b,a上是增函数,则f(x)在a,b上是()A奇函数B偶函数C减函数D增函数解析因为ycos x为偶函数并且在b,a上是增函数,所以ycos x在a,b上递减,故选C.答案C3函数ycos,x的值域是()A. B.C. D.解析0x,x.cos coscos ,y.故选B.答案B4函数y3cos x1的单调递减区间是_解析函数ycos x的单调递增区间是2k,2k(kZ)函数y3cos x1的单调递减区间是2k,2k(kZ)答案2k,2k(kZ)5比较大小:cos_cos.解析cos。
8、6余弦函数的图像与性质一、选择题1函数ycos x|cos x|,x0,2的大致图像为()答案D解析ycos x|cos x|故选D.2在区间上,下列函数是增函数的是()Ay ByCysin x Dycos x答案D解析由正弦、余弦函数的单调性判断可知选D.3函数y2cos x3的值域为()A1,5 B5,1C1,5 D3,1答案A4下列函数中,最小正周期为2的是()Ay|cos x| Bycos|x|Cy|sin x| Dysin|x|答案B5(2019马鞍山模拟)若函数ysin(x)的一个对称中心为,则函数ycos(x)的一条对称轴为()Ax BxCx Dx答案B解析函数ysin(x)的对称中心在ycos(x)的对称轴上,若ysin(x。
9、5正弦函数的图像与性质51正弦函数的图像基础过关1函数ysin x,x的简图是()答案D2在同一平面直角坐标系内,函数ysin x,x0,2与ysin x,x2,4的图像()A重合B形状相同,位置不同C关于y轴对称D形状不同,位置不同解析根据正弦曲线的作法可知函数ysin x,x0,2与ysin x,x2,4的图像只是位置不同,形状相同答案B3y1sin x,x0,2的图像与直线y2的交点的个数是()A0B1C2D3解析由1sin x2,得sin x1,x0,2,只有当x时,sin x1.答案B4函数ysin x,x的图像与函数yx的图像交点个数是_解析在同一坐标系内画出图像答案15用五点法画ysin x,x0,2的简图时,所。
10、3指数函数第1课时指数函数的图像与性质基础过关1指数函数yf(x)的图像经过点,那么f(4)f(2)()A8 B16 C32 D64解析设f(x)ax(a0且a1),由条件知f(2),故a2,a2,因此f(x)2x,f(4)f(2)242264.答案D2已知函数f(x)axb(a0,且a1)经过点(1,5),(0,4),则f(2)的值为()A7 B8 C12 D16解析由已知得解得f(x)3,f(2)3437.答案A3函数f(x)3x3(1x5)的值域是()A(0,) B(0,9)C. D.解析1x5,2x32,323x332,于是有f(x)9,即所求函数的值域为.答案C4指数函数y(2a)x在定义域内是减。
11、第2课时习题课对数函数的图像及其性质的应用基础过关1若f(x)mlog2x为对数函数,则()Am1 Bm2 CmR Dm1解析只有形如ylogax(a0且a1)的函数,才是对数函数答案A2若对数函数过点(4,2),则其解析式为()Ayx By2x Cylog4x Dylog2x解析设解析式为ylogax(a0且a1),因为点(4,2)在对数函数图像上,故2loga4,即a2.答案D3函数f(x)loga(2x)的定义域为()A(0,) B(2,)C(,2) D(,0)解析由题意2x0,即x2,故定义域为(,2)答案C4已知函数f(x)ln(x)1,f(a)4,则f(a)_解析设g(x)f(x)1ln(x),则g(x)为奇函数由f(a)4,知g(a)f(a)13.g(a)3,则。
12、,苏科数学,5.2 二次函数的图像和性质,函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,y x22x3, (x1)22,由活动一可知:函数y (x1)22的图像可以看成yx2平移得到,即y x22x3是函数yx2先向左平移一个。
13、,苏科数学,5.2 二次函数的图像和性质,你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数yx21的图像有哪些性质?,猜想:函数yx22的图像和y=x2的图像的位置有何关系?函数yx22的图像有哪些性质?,探索。
14、,苏科数学,5.2 二次函数的图像和性质,请在同一坐标系中画出函数 和 、 和 的图像,画一画,函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,1二次函数yax的图像是一条抛物线,抛物线的顶点在原点,对称轴为y轴,2当a0时,抛物线的开口向上,顶点是抛物线的最低点,3当a0时,抛物。
15、,苏科数学,5.2 二次函数的图像和性质,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,例2 画出yx2图像,画一画,观察函数yx2图像,说出图像的特征,抛物线关于y轴对称,当x0时,y随x增大而减小,抛物线开口向下,当x0时,y随x增大而增大,图像有最高点,过(0。
16、专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定a,b,c及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b-1 B.b-1C.b1 D.b12.2019通辽 在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的图像如图4-ZT-1所示,现给出以下结论:abc3 B.a5。
17、 1 考纲要求 命题趋势 1理解反比例函数的概念,能根据已知 条件确定反比例函数的解析式 2会画反比例函数图象,根据图象和解 析式探索并理解其基本性质 反比例函数是中考命题 热点之一,主要考查反比例函 数的图象、性质及解析式的确 定,也经常与一次函数、二次 函数及几何图形等知识综合 考查考查形式以选择题、填 空题为主. 知识梳理知识梳理 一、反比例函数的概念 一般地,形如_(k 是常数,k0)的函数叫做反比例函数 1反比例函数 yk x中的 k x是一个分式,所以自变量_,函数与 x 轴、y 轴无交点 2反比例函数解析式可以写成 xyk(k0),它。
18、 1 考纲要求 命题趋势 1理解一次函数的概念, 会利用待定 系数法确定一次函数的表达式 2会画一次函数的图象, 掌握一次函 数的基本性质,平移的方法 3 体会一次函数与一元一次方程不等 式的关系。 4.一次函数的与三角形面积的问题. 一次函数是中考的重点,主要 考查一次函数的定义、图象、性质 及其实际应用,有时与方程、不等 式相结合 题型有选择题、 填空题、 解答题. 知识梳理知识梳理 一、一次函数和正比例函数的定义 一般地,如果 ykxb(k,b 是常数,k0),那么 y 叫做 x 的一次函数 特别地,当 b_时,一次函数 ykxb 就成为 ykx(k 是。
19、3指数函数第1课时指数函数的图像与性质基础过关1指数函数yf(x)的图像经过点,那么f(4)f(2)()A8 B16 C32 D64解析设f(x)ax(a0且a1),由条件知f(2),故a2,a2,因此f(x)2x,f(4)f(2)242264.答案D2已知函数f(x)axb(a0,且a1)经过点(1,5),(0,4),则f(2)的值为()A7 B8 C12 D16解析由已知得解得f(x)3,f(2)3437.答案A3函数f(x)3x3(1x5)的值域是()A(0,) B(0,9)C. D.解析1x5,2x32,323x332,于是有f(x)9,即所求函数的值域为.答案C4指数函数y(2a)x在定义域内是减。
20、7正切函数71正切函数的定义72正切函数的图像与性质基础过关1已知sin tan 0,那么角是()A第一或第二象限角B第二或第三象限角C第三或第四象限角D第一或第四象限角解析若sin 0,tan 0,则在第二象限;若sin 0,tan 0,则在第三象限答案B2若已知角满足sin ,cos ,则tan ()A. B. C. D.解析由三角函数定义可知tan .答案B3函数f(x)tan,xR的最小正周期为()A.BC2D4解析由2,故选C.答案C4使函数y2tan x与ycos x同时为单调递增的区间是_解析由y2tan x与ycos x的图像知,同时为单调递增的区间为(2k,2k(kZ)和2k,2k)(kZ)答案(2k,2k(kZ)和2k,2k)(kZ。