第第22章二次函数填空题精选章二次函数填空题精选1(2020春东城区校级期末)二次函数图象过A(1,0),B(2,0),C(0,2),则此二次函数的解析式是2(2020春海淀区校级期末)在平面直角坐标系xOy中,函数y12x(xm)的图象与函数y2x2(xm)的图象组成图形G对于任意实数n,过点P(
函数填空题Tag内容描述:
1、高中数学专题06 指数函数与对数函数【母题来源一】【2019年高考全国卷理数】若ab,则Aln(ab)0 B3a0 Dab【答案】C【解析】取,满足,但,则A错,排除A;由,知B错,排除B;取,满足,但,则D错,排除D;因为幂函数是增函数,所以,即a3b30,C正确故选C【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断【命题意图】1了解指数函数模型的实际背景2理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算3理解指数函数的概念,理解指数函数的。
2、专题02函数的概念与基本初等函数考纲解读三年高考分析1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理。
3、专题02函数的概念与基本初等函数考纲解读三年高考分析1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调。
4、4.2 一次函数与正比例函数,第四章 一次函数,八年级数学北师版,学习目标,1.掌握一次函数、正比例函数的概念.(重点) 2.能根据条件求出一次函数的关系式(难点),导入新课,观察与思考,在古代,许多民族与地区使用水钟来计时,如图所示当时的人们通过容器泄水的流量来判断时间的多少那么你知道为什么可以用水流量来判断时间吗?,假设漏水量是均匀的,受水壶中的浮子就会均匀升高,也就是说,浮子升高高度h=kt(k为常数),讲授新课,在现实生活当中有许多问题都可以归结为函数问题,大家能不能举一些例子?,(2)你能写出y与x之间的关系吗?,y=3+0.。
5、阶段检测 3 一次函数与反比例函数一、选择题(本大题有 10 小题 ,每小题 4 分,共 40 分 请选 出各小题中唯一的正确选项,不选、多选、错选,均不得分)1若 A(2x5,62x)在第四象限,则 x 的取值范围是( ) Ax3 Bx3 Cx3 Dx32已知下列函数:y (x0) ,y2x1,y 3x 21(x0),2xyx3,其中 y 随 x 的增大而减小的函数有( )A1 个 B2 个 C3 个 D4 个3在同一直角坐标系中,一次函数 ykxk 与反比例函数 y (k0)的图象大致是( )kx4已知函数 y 图象如图,以下结论,其中正确有( )mxm0;在每个分支上 y 随 x 的增大而增大;若 A(1,a),点 B(2,b)在图象上,。
6、1专题 02 函数的概念与基本初等函数 I1 【2019 年高考全国卷文数】已知 ,则0.20.32log.,abcA abc B abC D【答案】B【解析】 22log0.l10,a.201,b即.30,c,c则 b故选 B【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养采取中间量法,根据指数函数和对数函数的单调性即可比较大小2【2019 年高考全国卷文数】设 f(x)为奇函数,且当 x0 时,f (x)= ,则当 x0,且 a1)的图象可能是1xya12log)ax【答案】D【解析】当 时,函数 的图象过定点 且单调递减,则函数 的图象过定点01axya(0,1)1xya且单调递增,函数 的图象过定点 且单调。
7、专题 3 反比例函数问题例题精讲例 1.(北海中考)如图,反比例函数 y= (x0 )的图象交 RtOAB 的斜边 OA 于点 D,交直角边 ABkx于点 C,点 B 在 x 轴上若 OAC 的面积为 5,AD :OD=1:2,则 k 的值为_ 【解答】解:过 D 点作 x 轴的垂线交 x 轴于 E 点, ODE 的面积和OBC 的面积相等 = ,k2OAC 的面积为 5,OBA 的面积=5+ ,k2AD:OD=1:2,OD:OA=2 : 3,DEAB,ODEOAB, =( ) 2 , S ODES OAB23即 = ,k25+k249解得:k=8例 2.(临沂中考)如图,在平面直角坐标系中,点 A、B 均在函数 y (k0,x0)的图象上,Akx与 x 轴相切,B 与 y 。
8、二次函数 平行四边形填空选择压轴题练习一选择题(共20小题)1如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个2二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X1013y1353下列结论:(1)ac0;(2)当x1时,y的值随x值的增大而减小(3)3是方程ax2+(b1)x+c=0的一个根;(4)当1x3时,ax2+(b1)x+c0其中正确的个数为()A4个B3个C2个D1个3如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(1,0),对称轴为直线。
9、2021 年中考数学复习函数填空压轴题专项突破训练年中考数学复习函数填空压轴题专项突破训练 1如图,在平面直角坐标系中,已知 A(1,0) ,B(0,2) ,将ABO 沿直线 AB 翻折后得到ABC,若 反比例函数 y(x0)的图象经过点 C,则 k 2在平面直角坐标系中,A,B,C 三点的坐标分别为(4,0) , (4,4) , (0,4) ,点 P 在 x 轴上,点 D 在 直线 AB 上。
10、6指数函数、幂函数、对数函数增长的比较一、选择题1.下列函数中,增长速度最慢的是()A.y6x B.ylog6xC.yx6 D.y6x考点题点答案B解析对数函数增长的速度越来越慢,故选B.2.下面对函数f(x)与g(x)x在区间(0,)上的衰减情况的说法正确的是()A.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越快B.f(x)的衰减速度越来越快,g(x)的衰减速度越来越慢C.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快考点题点答案C解析在区间(0,)上,指数函数yax(0a1)和对数函数ylogax(0a1)都是减函数,它们的衰减。
11、6指数函数、幂函数、对数函数增长的比较基础过关1今年小王用7 200元买了一台笔记本电脑,由于电子技术的飞速发展,计算机成本不断降低,每隔一年这种笔记本电脑的价格降低,则三年后这种笔记本的价格是()A7 200 B7 200C7 200 D7 200解析由于小王用7 200元买了一台笔记本电脑,每隔一年这种笔记本电脑的价格降低,故一年后这种笔记本电脑的价格为7 2007 2007 200,两年后,价格为7 2007 200,三年后这种笔记本电脑的价格为7 200.答案B2如图给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到。
12、6指数函数、幂函数、对数函数增长的比较学习目标1.了解三种函数的增长特征.2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.知识点一同类函数增长特点当a1时,指数函数yax是增函数,并且当a越大时,其函数值的增长就越快.当a1时,对数函数ylogax是增函数,并且当a越小时,其函数值的增长就越快.当x0,n0时,幂函数yxn是增函数,并且当x1时,n越大其函数值的增长就越快.知识点二指数函数、幂函数、对数函数的增长差异一般地,在区间(0,)上,尽管指数函数yax(a1)、幂函数yxn(n0)与对数函数ylogax(a1)都是增函。
13、章末检测卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)12log63log6等于()A0B1C6Dlog6答案B解析原式2log623log63log661.2函数y的定义域是()A(,2) B(2,)C(2,3)(3,) D(2,4)(4,)答案C解析利用函数有意义的条件直接运算求解由得x2且x3,故选C.3下列函数中,既是偶函数又在区间(0,)上单调递减的是()AyByexCyx21Dylg|x|答案C解析A项,y是奇函数,故不正确;B项,yex为非奇非偶函数,故不正确;C、D两项中的两个函数都是偶函数,且yx21在(0,)上是减函数,ylg|x|在(0,)上是增函数,故选C.4.已知函数f。
14、章末复习课网络构建核心归纳1指数和对数(1)分数指数的定义:a(a0,m,nN,m2),a(a0,m,nN,m2)(2)如同减法是加法的逆运算,除法是乘法的逆运算一样,对数运算是指数运算的逆运算abNlogaNb(a0,a1,N0)由此可得到对数恒等式:alogaNN,blogaab.(3)对数换底公式logaN(a0,b0,a1,b1,N0)的意义在于把各个不同底数的对数换成相同底数的对数,这样,一可以进行换算,二可以通过对数表求值(4)指数和对数的运算法则有:amanamn,logaMlogaNloga(MN),(am)namn,logaMnnlogaM,amanamn,logaMlogaNloga.(aR,m,nR)(M,NR,a0,a1)2指数函数、。
15、章末检测(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中的横线上)1.已知点(3,1)和点(4,6)在直线3x2ya0的两侧,那么实数a的取值范围为_.解析根据题意知(92a)(1212a)0,即(a7)(a24)0,解得7a24.答案(7,24)2.若x,y满足则2xy的最大值为_.解析不等式组表示的可行域如图中阴影部分所示.令z2xy,则y2xz,作直线2xy0并平移,当直线过点A时,截距最大,即z取得最大值,由得所以A点坐标为(1,2),可得2xy的最大值为2124.答案43.不等式x22x的解集是_.解析因为x22x,所以x22x0,解得x0或x2,所以不。
16、章末检测卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若幂函数y(m23m3)xm2m1的图象不过原点,则实数m的值是()A.1 B.2 C.1或2 D.以上都不对解析由题意得m23m31,即m1或2.当m1时,m2m11;m2时,m2m11.又函数图象不过原点,m2m11,即m1.答案A2.函数f(x)lg (1x1)的图象的对称点为()A.(1,1) B.(0,0) C.(1,1) D.(1,1)解析f(x)lg lg f(x),又1x1,函数yf(x)为奇函数.f(x)lg的图象关于(0,0)对称.答案B3.设a1,函数f(x)logax在区间a,2a上的最大值。
17、章末复习考点一指数函数、对数函数、幂函数的综合应用例1已知函数f(x)lg(10x1)x,g(x),且函数g(x)是奇函数(1)判断函数f(x)的奇偶性,并求实数a的值;(2)若对任意的t(0,)不等式g(t21)g(tk)0恒成立,求实数k的取值范围;(3)设h(x)f(x)x,若存在x(,1,使不等式g(x)h(lg(10b9)成立,求实数b的取值范围解(1)函数f(x)的定义域为R,任意xR有f(x)lg(10x1)(x)lgxlg(10x1)lg 10xxlg(10x1)xf(x),f(x)是偶函数g(x)是奇函数,g(x)的定义域为R,由g(0)0,得a1.(2)由(1)知g(x)3x,易知g(x)在R上单调递增,又g(x)为奇函数g(t21)g(tk)0恒成立,g(t21)g(。
18、高中数学专题05 指数函数、对数函数、幂函数【母题原题1】【2019年高考天津卷文数】已知,则a,b,c的大小关系为A B CD【答案】A【解析】,故选A【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与的大小进行判断【母题原题2】【2018年高考天津卷文数】已知,则的大小关系为A B C D【答案】D【解析】由题意可知:,即,综上可得:故选D【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指。
19、第第 22 章二次函数填空题精选章二次函数填空题精选 1 (2020 春东城区校级期末)二次函数图象过 A(1,0) ,B(2,0) ,C(0,2) ,则此二次函数的解 析式是 2 (2020 春海淀区校级期末)在平面直角坐标系 xOy 中,函数 y12x(xm)的图象与函数 y2x2(x m)的图象组成图形 G对于任意实数 n,过点 P(0,n)且与 y 轴垂直的直线总与图形 G 有公共点,写。