第3课时直线与平面垂直的判定和性质 一、选择题 1.已知PA矩形ABCD,下列结论中,不正确的是() A.PBBC B.PDCD C.PDBD D.PABD 答案C 解析依题意画出几何图形,如图,显然PDBD不正确; BC平面PAB,则PBBC;CD平面PAD, 则PDCD;PA平面ABCD,则PA
函数yAsinx的图像与性质二课时对点练含答案Tag内容描述:
1、第3课时直线与平面垂直的判定和性质一、选择题1.已知PA矩形ABCD,下列结论中,不正确的是()A.PBBC B.PDCDC.PDBD D.PABD答案C解析依题意画出几何图形,如图,显然PDBD不正确;BC平面PAB,则PBBC;CD平面PAD,则PDCD;PA平面ABCD,则PABD.2.ABC所在的平面为,直线lAB,lAC,直线mBC,mAC,l,m为两条不重合的直线,则直线l,m的位置关系是()A.平行 B.垂直C.相交 D.以上都有可能答案A解析直线lAB,lAC,且ABACA,l平面,同理直线m平面.由线面垂直的性质定理可得lm.3.已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相。
2、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质一、选择题1.下列四个说法中正确的是()A.平面内有无数个点到平面的距离相等,则B.a,b,且ab(,分别表示平面,a,b表示直线),则C.平面内一个三角形三边分别平行于平面内的一个三角形的三条边,则D.平面内的一个平行四边形的两边与平面内的一个平行四边形的两边对应平行,则答案C解析由面面平行的判定定理知C正确.2.如图所示,设E,F,E1,F1分别是长方体ABCDA1B1C1D1的棱AB,CD,A1B1,C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A解。
3、第2课时直线与平面平行的性质一、选择题1.若直线l平面,则过l作一组平面与相交,记所得的交线分别为a,b,c,那么这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案A解析因为直线l平面,所以根据直线与平面平行的性质知la,lb,lc,所以abc,故选A.2.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EHFG,则EH与BD的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A3.如图,在三棱柱ABCA1B1C1中,AM2MA1,BN2NB1,过MN作一平面交底面三角形ABC的边BC,A。
4、第2课时函数yAsin(x)的图象与性质一、选择题1函数y2sin的周期、振幅、初相分别是()A.,2, B4,2,C4,2, D2,2,答案C解析由函数解析式,得A2,T4.2如图所示,函数的解析式为()Aysin BysinCycos Dycos答案D解析由图知T4,2.又当x时,y1,经验证,可得D项解析式符合题目要求3若函数f(x)3sin(x)对任意x都有ff,则有f等于()A3或0 B3或0C0 D3或3答案D解析由ff知,x是函数的对称轴,解得f3或3,故选D.4将函数f(x)sin x(其中0)的图象向右平移个单位长度,所得图象经过点,则的最小值是()A. B1 C. D2考点正弦、余弦函数性质的综合应用题点正弦。
5、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质一、选择题1符合以下三个条件:在上单调递减;以2为周期;是奇函数这样的函数是()Aysin x Bysin xCycos x Dycos x考点正弦、余弦函数性质的综合应用题点正弦、余弦函数性质的综合应用答案B解析在上单调递减,可以排除A,是奇函数可以排除C,D.2对于函数f(x)sin 2x,下列选项中正确的是()Af(x)在上是递增的Bf(x)的图象关于原点对称Cf(x)的最小正周期为2Df(x)的最大值为2考点正弦、余弦函数性质的综合应用题点正弦函数性质的综合应用答案B解析因为函数ysin x在上是递减的,。
6、第第 4 4 课时课时 函数函数 y yA Asinsin xx 的性质的性质 二二 课时对点练课时对点练 1若函数 fx2sin2x3 是偶函数,则 的值可以是 A.56 B.2 C.3 D2 答案 A 解析 令 x0 得 f02sin3。
7、第2课时正切函数的图象与性质一、选择题1函数ytan的定义域是()ARB.C.D.答案B2函数f(x)tan的单调递增区间为()A.,kZB(k,(k1),kZC.,kZD.,kZ答案C3函数f(x)|tan 2x|是()A周期为的奇函数 B周期为的偶函数C周期为的奇函数 D周期为的偶函数考点正切函数周期性与对称性题点正切函数周期性、奇偶性答案D解析f(x)|tan(2x)|tan 2x|f(x),故f(x)为偶函数,T.4与函数ytan的图象不相交的一条直线是()Ax ByCx Dy考点正切函数的图象题点正切函数的图象答案C解析令2xk(kZ),得x(kZ)令k0,得x.5已知f(x)tan,则使f(x)成立的x的集合是()A.,kZB.,kZC.,。
8、8函数yAsin(x)的图像与性质(二)一、选择题1(2018安徽滁州高二期末)最大值为,最小正周期为,初相为的函数表达式是()Aysin BysinCysin Dysin考点求三角函数的解析式题点三角函数中参数的物理意义答案D解析由最小正周期为,排除A,B;由初相为,排除C.2若函数f(x)3sin(x)对任意x都有ff,则有f等于()A3或0 B3或0C0 D3或3答案D解析由ff知,x是函数的对称轴,解得f3或3,故选D.3如图所示,函数的解析式为()Aysin BysinCycos Dycos答案D解析由图知T4,2.又当x时,y1,经验证,可得D项解析式符合题目要求4.函数f(x)Asin(x)的部分图像如图所示,为。