有理数的加减混合运算,广西崇左市大新县雷平中学数学组何勇新,复习提问:,(1)有理数的加减混合运算统一成加法. (2)有理数的加法运算律,(-8)+(+10)+(-6)+(-4),在一个和式里,通常把各个加数的括号和它前面的加号省略不写。所以可以写成:,-8 +10 -6 -4,也就是-8+10-6
华师大版数学七年级上2.11有理数的乘方课件2Tag内容描述:
1、有理数的加减混合运算,广西崇左市大新县雷平中学数学组何勇新,复习提问:,(1)有理数的加减混合运算统一成加法. (2)有理数的加法运算律,(-8)+(+10)+(-6)+(-4),在一个和式里,通常把各个加数的括号和它前面的加号省略不写。所以可以写成:,-8 +10 -6 -4,也就是-8+10-6-4,按减法法则(减去一个数,等于加上它们的相反数).则有上面的式子可以写成:,如:(-8)-(-10)+(-6)-(+4),有理数加法的运算律,加法交换律:两个有理数相加,交换加数的位置,和不变。加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加。,a+b=b+a,a+b+c=(a+b)+。
2、2 2.9 .9 有理数的乘方有理数的乘方 2 2.9.9 有理数的有理数的乘方乘方 第第2 2课时课时 北师大版北师大版 数学数学 七七年级年级 上册上册 2 2.9 .9 有理数的乘方有理数的乘方 导入新知导入新知 计算计算: :110。
3、有理数的乘方,若对折100次,算式中有几个2相乘?,对折2次可裁成4张,即22张;,对折3次可裁成8张,即222张;,问题:若对折10次可裁成几张?请用一个算式表示(不用算出结果),合作探究一:,对折10次裁成的张数用以下算式计算2222222222 是一个有10个2相乘的乘积式;,对折100次裁成的张数,可用算式 计算,在这个积中有100个2相乘。这么长的算式有简单的记法吗?,知识目标:了解乘方的意义并能正确的读、写;掌握幂的性质并能进行乘方的运算。 能力目标:培养观察、类比、归纳、知识迁移的能力。通过乘方运算,培养运算能力; 教学重难点:重。
4、,有理数的乘方,新课准备,乘方的意义,乘方的读法,练练吧一,练练吧三,课后测验,幂的性质,返回,下一页,练练吧二,棋盘上的学问,古时候,有个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“就在这个棋盘上放一些米粒吧。,退出,下一页,上一页,返回,第1格放1粒,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒一直到第64格。”“你真傻!就要这么一点米?”,国王哈哈大笑。这位大臣说:“就怕您的国库里没有这么多米!”你认为国王的国。
5、2.13有理数的混合运算 - 第一课时,第二关,第三关,第四关,第五关,第六关,第七关,闯关夺旗,*每一个非零有理数由_和_两部分组成;,*有理数的减法法则,* 有理数的加法法则,1)同号两数的相加,取加数符号,并把绝对值相加; 2)绝对值不等异号两数相加,取绝对值较大数的符号, 并用较大绝对值减去较小绝对值; 3)互为相反数的两数相加和为零; 4)零与任何数相加仍得这个数。,减去一个数就是加上这个数的相反数。,学而时习之,不亦悦乎?,*有理数的乘法法则,*有理数的除法法则,1)两数相乘同号得正,异号得负,并把绝对值相乘; 2)零与任何。
6、耳到、眼到、口到、心到,七年级 数学(上),自主、合作、探究、互动,2.10有理数的除法,第2章 有理数的运算,快速反应,快速反应,计算:,2(3)=_,(-4)(-3)=_,89=_,0(6)=_,(-4)2 =_,(6) 2=_,12(4)=_,729=_,(8)(4)=_,0(6)=_,探索,观察右侧算式, 两个有理数相除时:,商的符号如何确定?,商的绝对值如何确定?,-6,12,72,-8,0,3,3,8,0,2,(6) 2=_,12(4)=_,729=_,(-8)(- 4)=_,0(6)=_,-3,-3,8,0,探索,商的符号如何确定?,商的绝对值如何确定?,异号两数相除得负,并把绝对值相除,同号两数相除得正,并把绝对值相除,零除以任何非零数得零,2,有理数的除。
7、2.9有理数的乘法,第一课时 有理数的乘法法则,导入,在小学里我们已经学习了正有理数和零的 乘法运算,请同学们计算下列各题:,3 3 0 6 0 0,一只蜗牛沿直线爬行,它现在的位置在l上的点O,规定: 方向:向左为负,向右为正 时间:现在前为负,现在后为正,问题:,(1)如果蜗牛一直以每分3cm的速度向右爬行,2分后它在什么位置?,2分钟后蜗牛应在O点的右边6cm处。 可以表示为:(2)(3) 6,(2)如果蜗牛一直以每分3cm的速度向左爬行,2分后它在什么位置?,3分钟后蜗牛应在O点的左边6cm处。 可以表示为:(3)(2) 6,寻找规律,(1)想一想,32 = 6 (-3) 2= - 6 43 。
8、义务教育课程标准试验教科书 七年级 上册,华东师范大学出版社,2.9有理数的乘法,(第一课时),教学目标,1经历探索有理数乘法的法则的过程,在有关活动中发展学生的探究意识、合作交流的习惯。 2探索并掌握有理数乘法的法则,会用有理数乘法的法则进行简单的计算。 3鼓励学生大胆“议一议”、“猜一猜”、“说一说”,激发学生的学习思维和学习热情。,教学重点、难点,重点:有理数乘法的运算 难点:有理数乘法中的符号法则,一、温故知新、引入课题,一只小虫,沿一条东西巷的跑道,以每分钟3米的速度向东爬行2分钟,那么它现在位于原来位置的。
9、热身运动(预习)各显身手(尝试)更上一层楼(练习)智力大冲浪(变式)我们的收获,热身运动,1填一填:(1)2(3)=( );(2)( )(3)= 6;(3)2( )= 6请问:上述(2) 、(3)已知什么求什么?用什么方法? 如何列式?,热身运动,回答:已知积与一个因数求另一个因数,用除法 列式为: (6)(3)=2,(6)2=3,2.计算:,热身运动,3. 做一做:,你发现了什么规律吗?,除法可以转化为乘法来进行,除以一个数等于乘以这个数的倒数。,3,互为倒数: 定义:如果两个数的乘积等于1,那么这两个数叫做互为倒数 (reciprocal).,写出下列数的倒数:,各显身手,(1)(18)。
10、2 2.11 .11 有理数有理数的混合运算的混合运算 2 2.11.11 有理数的混合运算有理数的混合运算 北师大版北师大版 数学数学 七七年级年级 上册上册 2 2.11 .11 有理数有理数的混合运算的混合运算 导入新知导入新知 比一。
11、,导入新课,讲授新课,当堂练习,课堂小结,9 有理数的乘方,第二章 有理数及其运算,1.理解并掌握有理数的乘方、幂、底数、指数的概 念及意义.(重点) 2.能够正确进行有理数的乘方运算.(难点),下图是日本某小学门前贴的一张海报,你懂其中的含义吗?,一点一滴地努力,总有一天能够变成巨大的力量. 反之,稍微有一点怠慢的话,总有一天会变得无力.,导入新课,手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折,每次对折称为一扣,如此反复操作,连续扣六七次后便成了许多。
12、义务教育课程标准试验教科书 七年级 上册,华东师范大学出版社,2.8 有理数的加减混合运算,(第二课时),学习目标,1 将有理数加减混合运算分两步 化成省略加号的代数和的形式 2 熟练进行有理数加减混合运算,。,一、导语设计、引入课题,复习提问:,(1)有理数的加法法则,减法法则分别是怎样的? (2)有理数的减法法则,告诉我们什么?,你记牢了吗?说说看,有理数的加法法则,减法法则分别是怎样的?,有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小。
13、,导入新课,讲授新课,当堂练习,课堂小结,11 有理数的混合运算,第二章 有理数及其运算,1.掌握有理数混合运算的法则,并能熟练地进行有理 数加、减、乘、除、乘方的混合运算.(重点) 2.在运算过程中能合理地使用运算律简化运算.(难点),导入新课,复习引入,我们目前都学习了哪些运算?请举出一些例子.,加法、减法、乘法、除法、乘方.,从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或24.其中红色扑克牌代表负数,黑色扑克牌代表正数,J,Q,K分别代表11,12,13.,1.只含某一级运。
14、有理数的减法,算一算,看谁又快准,(1) (+4)+(+16) = (2)(2)+(27) =(3) (9)+(+10) = (4) (+45)+(60) = (5) (7)+(+7) =(6) 16+ 0 = (7) 0 +(8 ) =,20,-29,+1,-15,0,16,-8,(1) 同号两数相加,取相同的符号,并把绝对值相加.,(2 )绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.,(3) 一个数与0相加,仍得这个数.,8848,155,0,吐鲁番盆地,珠穆朗玛峰,世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是155米珠穆朗玛峰比。
15、第二章 有理数我们要学的有:有理数,数轴,相反数,绝对值,有理数的运算,2.1有理数 1.正数和负数,第二章 有理数,学习目标:1.了解正数,负数的产生是生产和生活的需要,会用正数、负数表示具有相反意义的量;2.对零的认识;3.理解有理数的概念,有理数的分类;,我们在小学阶段里学过了负数,知道了负数的意义。正数和负数,那么在我们日常生活当中,经常会碰到具有相反意义的量。看课本上的例子:1.向东行驶多少米和向西行驶多少米,具有相反意义的量;2.收入多少元和支出多少元,具有相反意义的量;3.升高多少米和下降多少米,具有相反。
16、2.5 有理数的大小比较,一、复习,比较下列数的大小 (1)11,25 (2)0.0091,0.0121,二、新知识学习,珠穆朗玛峰的海拨高度为8848米,叶鲁番盆地的海拨高度为-155米,哪个高?,5C与2C哪个高?,8848-155 -52,正数都大于0, 负数都小于0,即0大于负数;,正数大于一切负数!,甲:-50米,乙:-100米,哪艘潜艇的位置低?,两个负数,绝对值大的反而小, 100 50 但 10050,-4 -3 -2 -1 0 1 2 3 4 5 6,-4 -2 -0.5 1 1.5 5,在以向右为正方向的数轴上的两点, 右边的点表示的数比左边的大。 反过来,左边的点表示的数比右边的小。 简单记为:左边右边, 。
17、义务教育课程标准试验教科书 七年级 上册,华东师范大学出版社,2.9有理数的乘法,(第二课时),教学目标,1使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。 2使学生掌握多个有理数相乘的积的符号法则。 3培养学生观察、归纳、概括及运算能力。,教学重点、难点,重点:乘法的符号法则和乘法的运算 难点:积的符号的确定。,一、温故知新、引入课题,叙述有理数乘法法则。,探索,(6)(-10)(-16);,(1)(-6) 5;,(2)(-9)(-4);,(3)(-36)(-1);,(4) 3(-11);,(5)(-5) 16;,(7)100 (-0.001);,(8)-300.2 ;,-90,-33,36,-80,-0.1,-6,160,36,通过计。
18、义务教育课程标准试验教科书 七年级 上册,华东师范大学出版社,2.10有理数的除法,教学目标,1使学生理解有理数倒数的意义。 2使学生掌握有理数的除法法则,能够熟练地进行除法运算。 3培养学生观察、归纳、概括及运算能力。,教学重点、难点,重点:有理数除法法则。 难点:(1)商的符号的确定;(2)0不能作除数的理解,一、温故知新、引入课题,(1)2(3)=( );(2)( )(3)= 6;(3)2( )= 6请问:上述(2) 、(3)已知什么求什么?用什么方法?如何列式?,-6,2,-3,已知积与一个因数求另一个因数, 用除法 列式为: (6)(3)=2, (6)2=3,2.计算:,互为倒数:。
19、2.11有理数的乘方,(华师大版),崇德中学管新军,教材分析,教学方法,教学评价,板书设计,教学过程,1、本节在教材中的地位和作用,有理数的乘方是有理数的一种基本的运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法和开方的基础,起到承前启后的作用,一、教材分析,让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算,能力目标:,培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中。
20、2.11 有理数的乘方,记作:? 读作:?,记作:? 读作:?,记作:? 读作:?,求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.,读作“a的n次方”,一般地,,an=,an,底数,指数,幂,练一练,在 中,底数是 ,指数 。,在 中,底数是 ,指数 。,在 中,底数是 ,指数 。,7,4,4,5,试说出它们的意义,4,例1 :认一认,读一读 (1) 23 (3) (2)3 (4)2 3,(2) 32,(5)(2)4,(6) 2 4,比一比:(1)与(2)一样吗?(3)与(4)一样吗?(5)与(6)意义一样吗?,分别将上面的6个式子读一读!(学生做笔记),讨论总结: 有理数乘法法则,正数的 都。