18.1平行四边形的性质 (第1课时),同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?,太阳光属于平行光,窗口在地面上的影子通常是平行四边形,美丽的家园,我们要好好的利用和保护她,欣赏,中国的骄傲,我们学习的榜样!,爱动脑筋的小明观察到平行四边形有一种对称的美,于是小明用一根
沪科版八年级数学下册19.2第3课时平行四边形边的判定课件Tag内容描述:
1、18.1平行四边形的性质 (第1课时),同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?,太阳光属于平行光,窗口在地面上的影子通常是平行四边形,美丽的家园,我们要好好的利用和保护她,欣赏,中国的骄傲,我们学习的榜样!,爱动脑筋的小明观察到平行四边形有一种对称的美,于是小明用一根24m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?,1、探索并掌握平行四边形的性质,并从中体会类比和转化的数学思想和方法.,2、能够灵活运用平行四边形的性质解决问题.,学习目标,问题1:你知道。
2、18.1平行四边形的性质 (第1课时),同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?,太阳光属于平行光,窗口在地面上的影子通常是平行四边形,美丽的家园,我们要好好的利用和保护她,欣赏,中国的骄傲,我们学习的榜样!,爱动脑筋的小明观察到平行四边形有一种对称的美,于是小明用一根24m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?,1、探索并掌握平行四边形的性质,并从中体会类比和转化的数学思想和方法.,2、能够灵活运用平行四边形的性质解决问题.,学习目标,问题1:你知道。
3、,导入新课,讲授新课,当堂练习,课堂小结,22.1 平行四边形的性质,第二十二章 四边形,第2课时 平行四边形的性质定理2,1.掌握平行四边形对角线互相平分的性质;(重点) 2.经历对平行四边形性质的猜想与证明的过程,渗透转化思想, 体会图形性质探究的一般思路.(难点),导入新课,分享蛋糕的故事,视频中的小朋友所说的那块蛋糕是最大的吗?为什么?,讲授新课,我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢?,如图,在ABCD中,连接AC,BD,并设它们相交于点O.,OA与OC,OB与OD有什么关系?,猜一猜,OA=OC,O。
4、,导入新课,讲授新课,当堂练习,课堂小结,22.1 平行四边形的性质,第二十二章 四边形,第1课时 平行四边形的性质定理1,1.理解并掌握平行四边形的概念及掌握平行四边形的定 义和对边相等、对角相等的两条性质.(重点) 2.根据平行四边形的性质进行简单的计算和证明.(难点) 3.经历“实验猜想验证证明”的过程,发展学生的思维水平.,导入新课,观察下图,平行四边形在生活中无处不在.,情景引入,你还能举出其他的例子吗?,讲授新课,观看下面视频,一起来了解平行四边形吧.,两组对边都不平行,一组对边平行, 一组对边不平行,两组对边分别平行,问题1。
5、平行四边形的判定定理夯实基础知识点 1 对角线互相平分的四边形是平行四边形1下列说法正确的是( )A对角线相等的四边形是平行四边形B对角线互相平分的四边形是平行四边形C对角线互相垂直的四边形是平行四边形D对角线互相垂直且相等的四边形是平行四边形2如图 2241 所示,AOCO,BD16 cm,则当 OB_cm 时,四边形 ABCD 是平行四边形图 22413若将两根木条 AC,BD 的中点重叠,并用钉子固定,则四边形 ABCD 为平行四边形,理由是_4如图 2242,在四边形 ABCD 中,ADBC,对角线 AC,BD 交于点 O,且 OAOC.求证:四边形 ABCD 是平行四边形图 22425。
6、平行四边形的判定定理夯实基础知识点 1 一组对边平行且相等的四边形是平行四边形1在四边形 ABCD中,ABCD,ABCD,则四边形 ABCD为_四边形,理由是_2下列不能判定四边形 ABCD是平行四边形的条件是( )AABCD,ADBC BCDAB,CDABCBCAD,ABCD DADBC,ADBC3如图 2230,在四边形 ABCD中,ADBC,ACBCAD.求证:ABCD.图 22304将两块全等的含 30角的三角尺按图 2231 所示的方式摆放在一起求证:四边形 ABCD是平行四边形图 22315如图 2232,在ABCD 中,点 E,F 分别在边 BC,AD 上,且 DFBE.求证:四边形 AECF是平行四边形图 2232知识点 2 两组对边分别。
7、平行四边形的判定定理教学目标:1掌握平行四边形的判定定理 3;(重点)2综合运用平行四边形的性质与判定解决问题(难点)教学过程:一、情境导入我们已经学习了哪些平行四边形的判定方法?平行四边形的对角线互相平分的逆命题是什么?是否是真命题是否存在其他的判定方法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形已知,如图, AB.CD 相交于点 O, AC DB, AO BO, E.F 分别是 OC.OD 的中点求证:(1) AOC BOD;(2)四边形 AFBE 是平行四边形解析:(1)利用已知条件和全等三角形的判定方法即可证明 AOC BOD;(2)此题已知 AO BO。
8、平行四边形的判定定理教学目标:1掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)2掌握“对边分别相等的四边形是平行四边形”的判定方法;(重点)3平行四边形判定定理的综合应用(难点)教学过程:一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1两组对边分别平行且相等;2两组对角分别相等;3两条对角线互相平分那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定那么是否存在其他的判定方法呢?。
9、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形的判定定理3,2.2.2 平行四边形的性质,第2章 四边形,1.利用两组对边分别相等判定平行四边形;(重点),3.判定定理的相关运用.(难点),学习目标,2.利用对角线互相平分判定平行四边形;(重点),问题1 除了两组对边分别平行,平行四边形还有哪些性质?,平行四边形的对角相等.,平行四边形的对角线互相平分.,思考 我们得到的这些逆命题是否都成立?这节课我们一起探讨一下吧.,问题2 上面的两条条性质的逆命题各是什么?,两组对角分别相等的四边形是平行四边形;,对角线互相平分的四边形。
10、9.3平行四边形第 1课时平行四边形的定义及其性质练习一、选择题1在 ABCD中,已知 A C200,则 A的度数是( )A160 B100 C80 D602如图 K131 所示,在 ABCD中, BC BD, C74,则 ADB的度数是( )A16 B22 C32 D68图 K131图 K1323如图 K132,在 ABCD中,对角线 AC和 BD相交于点 O.如果AC10, BD8, AB m,那么 m的取值范围是( )A1 m9 B2 m18C8 m10 D4 m54如图 K133,在 ABCD中, E, F是对角线 BD上的两点,如果添加一个条件使ABE CDF,则添加的条件不能是( )A AE CF。
11、9.3平行四边形第 3课时从对角线的关系判定平行四边形练习一、选择题1在四边形 ABCD中,对角线 AC和 BD相交于点 O,下列条件中不能判定四边形 ABCD是平行四边形的是( )A OA OC, OB ODB AD BC, AB DCC AB DC, AD BCD AB DC, AD BC2已知在四边形 ABCD中,对角线 AC, BD相交于点 O,且 OA OC, OB OD,则下列结论不一定成立的是( )A AB AC B AB CDC BAD BCD D AD BC3在四边形 ABCD中,对角线 AC, BD相交于点 O,给出下列四个条件: AD BC; AD BC; OA OC; OB OD.从中任选两个条件,能使四边形 ABCD为平行四边形的选法有( )A3 种 B4 种。
12、2.2.2 第 2 课时 利用对角线的关系判定平行四边形 一、选择题1下列命题中,真命题有( )对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形是平行四边形A3 个 B2 个 C1 个 D0 个2如图 K141,在四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,下列不能判定四边形ABCD 是平行四边形的是 ( )链 接 听 课 例 1归 纳 总 结图 K141AABDC,ADBC BABDC,ADBCCABDC,ADBC DOAOC,OBOD3在四边形 ABCD 中,对角线 AC,BD 相交于点 O,给出下列四个条件:ADBC;ADBC;OAOC;OBOD.从中任。
13、19.2 平行四边形,第19章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形对角线的性质,1.探索并掌握平行四边形对角线性质;(重点) 2.灵活运用平行四边形的性质进行推理和计算.,导入新课,分享蛋糕的故事,视频中的小朋友所说的那块蛋糕是最大的吗?为什么?,讲授新课,我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢?,如图,在ABCD中,连接AC,BD,并设它们相交于点O.,OA与OC,OB与OD有什么关系?,猜一猜,OA=OC,OB=OD,这个结论正确吗?,量一量,拿出手中的平行四边形纸片,测量出四。
14、9.3 平行四边形第 2 课时从边的关系判定平行四边形练习一、选择题1不能判定一个四边形是平行四边形的条件是( )A两组对边分别平行B一组对边平行另一组对边相等C一组对边平行且相等D两组对边分别相等图 K1412如图 K141,在四边形 ABCD 中, AD BC,要使四边形 ABCD 成为平行四边形,则可增加的条件是( )链 接 听 课 例 1归 纳 总 结A AB CDB AD BCC AC BDD ABC BAD1803已知关于四边形 ABCD 有以下四个条件: AB CD; AB CD; BC AD; BC AD.从这四个条件中任选两个,能使四边形 ABCD成为平行四边形的选法有( )A6 种 B5 种 C4 种 D3 种4如图 。
15、1课时作业(十三)2.2.2 第 1 课时 利用边的关系判定平行四边形 一、选择题1下列条件中不能判定四边形 ABCD 是平行四边形的是( )AABCD,ABCD BABCD,ADBCCABCD,ADBC DABCD,ADBC2在四边形 ABCD 中,ADBC,要判定四边形 ABCD 是平行四边形,还应满足( )AAC180 BBD180CAB180 DAD1803如图 K131,已知在四边形 ABCD 中,ABCD,ABCD,E 为 AB 上一点,过点 E作 EFBC,交 CD 于点 F,G 为 AD 上一点,H 为 BC 上一点,连接 CG,AH.若 GDBH,则图中的平行四边形有 ( )链 接 听 课 例 1归 纳 总 结图 K131A2 个 B3 个 C4 个 D6 个42018安徽在ABCD 。
16、第2章 四边形,2.2 平行四边形,第1课时 利用边的关系判定平行四边形,目标突破,总结反思,第2章 四边形,知识目标,2.2 平行四边形,知识目标,1通过自学阅读、操作、猜想、讨论,能够得到“一组对边平行且相等的四边形是平行四边形”这一判定定理,并能初步应用 2在理解平行四边形性质的基础上,经过画图、猜想、推理,能够得到“两组对边分别相等的四边形是平行四边形”这一判定定理,并会初步应用,目标突破,目标一 理解并会用“一组对边平行且相等的四边形是平行四边形”,2.2 平行四边形,例1 教材例5针对训练 如图229,已知BEDF,ADFCBE,AFCE。
17、19.2 平行四边形,第19章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第3课时 平行四边形边的判定,情境引入,学习目标,1.平行四边形判定方法的探究.(重点) 2.平行四边形判定方法的理解和灵活应用.(难点),平行四边形的性质,边,平行四边形的对边平行,平行四边形的对边相等,角,平行四边形的对角相等,平行四边形的邻角互补,平行四边形的对角线互相平分,对称性,平行四边形是中心对称图形,对角线,导入新课,知识回顾,导入新课,学习了平行四边形之后,小明回家用细木棒钉制了一个平行四边形.第二天,小明拿着自己动手做的平行四边形向同学。