7.1 不等式及其基本性质,第7章 一元一次不等式与不等式组,导入新课,讲授新课,当堂练习,课堂小结,1.了解不等式的概念,认识五种不等号的含义; 2.学会并准确运用不等式表示数量关系,理解并掌握不等式的基本性质(重点、难点),学习目标,导入新课,图片引入,谁长谁短,谁快谁慢,谁重谁轻,谁赢谁输,导
沪科版七年级数学下册8.4.2公式法课件Tag内容描述:
1、7.1 不等式及其基本性质,第7章 一元一次不等式与不等式组,导入新课,讲授新课,当堂练习,课堂小结,1.了解不等式的概念,认识五种不等号的含义; 2.学会并准确运用不等式表示数量关系,理解并掌握不等式的基本性质(重点、难点),学习目标,导入新课,图片引入,谁长谁短,谁快谁慢,谁重谁轻,谁赢谁输,导入新课,摩拜单车在2017年3月推出了红包车的运动.用户扫码解锁后有效骑行红包车超过10分钟,锁车后即可获得1个现金红包;骑行红包车次数及领取红包次数不限.红包金额随机,最低1元最高100元.你能用关系式表示可获红包金额的大小吗?,情境引入,x1。
2、8.1 幂的运算,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,2.幂的乘方与积的乘方,学习目标,1.理解并掌握幂的乘方及积的乘方法则;(重点) 2.掌握幂的乘方及积的乘方法则的推导过程并能灵活运用.(难点),幂的意义:,=an,am an,am+n,(m,n都是正整数),= am+n,推导过程,复习,情境导入,地球、木星、太阳可以近似地看做是球体 .木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?,你知道(102)3等于多少吗?,导入新课,1.一个正方体的棱长是10,则它的体积是 多少?,2.一个正方体的棱长是102,则。
3、初中数学七年级 下册 (苏科版),9.1单项式乘多项式(1),江苏省常州市新北区安家中学,主备人:周云锋,a,b,方法一:ab,方法二:3a 2b,3a 2b = ab,计算下列各式,并说明理由.,2a2b 3ab24ab2 5b6x3 (-2x2y),做一做,计算下列各式,并说明理由,解:原式=,=,=,=,解:原式=,=,=,=,解:原式=,=,=,=,=,=,=,=,=,=,系数相乘结果作为系数,同底数幂相乘,对于只在一个单项式中含有的字母 连同指数作为积的一个因式, 系 数 相 乘 结 果 作 为 系 数, 同 底 数 幂 相 乘,只在一个单项式中含有的字母,连同指数作为积的一个因式,试一试:,根据单项式乘单项式。
4、10.3 平行线的性质,第10章 相交线、平行线与平移,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.掌握平行线的性质,会运用两条直线是平行关系判 断角相等或互补;(重点),2.能够根据平行线的性质进行简单的推理.,根据右图,填空: 如果1C,那么( ) 如果1B 那么( ) 如果2B180,那么( ),AB,CD,EC,BD,同位角相等,两直线平行,内错角相等,两直线平行,EC,BD,同旁内角互补,两直线平行,导入新课,复习引入,问题 通过上题可知平行线的判定方法是什么?,思考 反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?,画两条平。
5、8.4 因式分解,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,3.分组分解法,因式分解:,思考:,四项式 又如何分解?,导入新课,回顾与思考,总结:这个多项式共有四项,可以把其中的两项分为一组,再提取公因式,且分组没有固定格式.,讲授新课,因式分解:,法1,法2,例1 分解因式,解:,分解因式:,练一练,小结:分组后再用公式法,例2 分解因式,解:,解:,例2 分解因式,方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止,分解因式: (1)5m2a45m2b。
6、8.1 幂的运算,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,1.同底数幂的乘法,学习目标,1.理解并掌握同底数幂的乘法法则.(重点)2.能够运用同底数幂的乘法法则进行相关计算.(难点),问题引入,我国国防科技大学成功研制的“天河二号”超级计算机以每秒33.86千万亿(3.3861016)次运算.问:它工作103s可进行多少次运算?,导入新课,(1)怎样列式?,3.3861016 103,我们观察可以发现,1016 和103这两个幂的底数相同,是同底的幂的形式.,(2)观察这个算式,两个乘数1016与103有何特点?,所以我们把1016 103这种运算叫作同。
7、,要点梳理,考点讲练,课堂小结,课后作业,小结与复习,第8章 整式乘法与因式分解,要点梳理,一、幂的乘法运算,1.同底数幂的乘法:底数_,指数_.,am+n,不变,相加,2.幂的乘方:底数_,指数_.,不变,相乘,3.积的乘方:积的每一个因式分别_,再把所得的幂_.,乘方,相乘,(1)将_相乘作为积的系数;,二、整式的乘法,1.单项式乘单项式:,单项式的系数,(2)相同字母的因式,利用_的乘法, 作为积的一个因式;,同底数幂,(3)单独出现的字母,连同它的_,作为积的一个因式;,指数,注:单项式乘单项式,积为_.,单项式,(1)单项式分别_多项式的每一项;,2.单项式乘。
8、第6章 实 数,小结与复习,要点梳理,考点讲练,课堂小结,课后作业,要点梳理,1. 平方根的概念及性质,2. 算术平方根的概念及性质,(2)性质:正数a有两个平方根,它们互为相反数;0的平方根是0,负数没有平方根.,(2)性质:0的算术平方根是0,只有非负数才有算术平方根,而且算术平方根也是非负数.,一、平方根,(1)定义:若r2=a,则r叫作a的一个平方根.,(1)定义:a的正平方根叫作a的算术平方根.,1. 立方根的概念及性质,(1)定义:如果b3=a,那么b叫作a的立方根.,二、立方根,(2)性质:每一个实数都有一个与它本身符号相同的立方根.,2. 用计算器求立方。
9、小结与复习,第9章 分 式,要点梳理,考点讲练,课堂小结,课后作业,1.分式的定义:,2.分式有意义的条件:,b0,分式无意义的条件:,b= 0,分式值为 0 的条件:,a=0且 b 0,一、分式的概念及基本性质,类似地,一个整式a除以一个非零整式b(b 中含有字母),所得的商记作 ,把代数式 叫作分式,其中a是分式的分子,b是分式的分母,b0.,要点梳理,即对于分式 ,有,分式的分子与分母都乘同一个非零整式,所得分式与原分式相等.,3.分式的基本性质,4.分式的约分:,约分的定义,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,最简分。
10、6.1 平方根、立方根,第6章 实 数,导入新课,讲授新课,当堂练习,课堂小结,2.立方根,情境引入,学习目标,1.了解立方根的概念,会用根号表示一个数的立方根.(重点) 2.能用开立方运算求某些数的立方根,了解开立方和 立方互为逆运算.(重点,难点),导入新课,某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?,情境引入,讲授新课,问题:要做一个体积为27cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?,解:设正方。
11、小结与复习,要点梳理,考点讲练,当堂练习,课堂小结,第10章 相交线、平行线与平移,一、对顶角,两个角有_,并且两边互为_,那么具有这种特殊关系的两个角叫作对顶角.,对顶角性质:_.,A,O,C,B,D,1,3,2,4,公共顶点,反向延长线,对顶角相等,要点梳理,二、垂线,当两条直线相交所成的四个角中,有一个角是_时,这两条直线互相垂直,其中一条直线叫另一条直线的_,它们的交点叫_.,1.垂线的定义,2.经过直线上或直线外一点,_一条直线与已知直线垂直.,4.直线外一点到这条直线的垂线段的_,叫作点到直线的距离.,3.直线外一点与直线上各点的所有连线中,。
12、10.4 平移,第10章 相交线、平行线与平移,导入新课,讲授新课,当堂练习,课堂小结,1.理解平移的概念及决定因素.(难点) 2.会找出平移前后图形中对应点、对应角和对应线段. 3.掌握平移的性质及运用.(重点),导入新课,视频引入,讲授新课,问题1:如何在一张半透明的纸上,画出一排形状和大小如图的尼克呢?,思考:“尼克”的形状、大小、位置在运动前后是否发生了变化?,形状不变,大小不变,位置改变,平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.,知识要点,A,B,C,判断下面几组图形运动是不是平移?,A。
13、8.2 整式乘法,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,1.单项式与单项式相乘,第2课时 单项式除以单项式,学习目标,1.理解和掌握单项式除以单项式的运算法则,运用运算法则熟练、准确地进行计算.(重点) 2.通过总结法则,培养概括能力;训练综合解题能力和计算能力.(难点),1.用字母表示幂的运算性质:,= a10,= yz5,= c2,复习与回顾,= 2x10,单项式相乘,把系数、同底数幂分别相乘,作为积的一个因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.,单项式乘单项式的运算法则:,导入新课,情境。
14、8.2 整式乘法,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,2.单项式与多项式相乘,第2课时 多项式除以单项式,学习目标,1.理解和掌握多项式除以单项式的运算法则.(重点) 2.会进行简单的多项式除以单项式的运算.(难点),3a3b2c,5a,8(a+b)4,3ab2c,相除;,相除;,不变;,单项式相除,复习引入,导入新课,问题 如何计算(ma+mb+mc) m?,方法1:因为m(a+b+c )=ma+mb+mc,所以 (ma+mb+mc) m=a+b+c; 方法2:类比有理数的除法 (ma+mb+mc) m=(ma+mb+mc) =a+b+c.,讲授新课,商式中的项a、b、c是怎样得到的?你能总结出 多项式。
15、8.2 整式乘法,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,2.单项式与多项式相乘,第1课时 单项式乘以多项式,学习目标,1.能根据乘法分配律和单项式与单项式相乘的法则,探究单项式与多项式相乘的法则; 2.掌握单项式与多项式相乘的法则并会运用.(重点,难点),如图,试求出三块草坪的的总面积是多少?,如果把它看成三个小长方形,那么它们的面积可分 别表示为_、_、_,总面积为_.,pa,pc,pb,导入新课,pa+pb+pc,如果把三个小长方形拼成一个大长方形,那么它们总面积可以表示为_.,p(a+b+c),p (a + b+ c),pb,+,pc,pa,+,。
16、8.2 整式乘法,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,1.单项式与单项式相乘,第1课时 单项式乘以单项式,学习目标,1.掌握单项式与单项式相乘的运算法则.(重点) 2.能够灵活地进行单项式与单项式相乘的运算. (难点),1.前面学习了哪些幂的运算?运算法则分别是什么?,2.计算下列各题:(1)(a5)5; (2)(a2b)3 ; =a25 (3) (2a)2(3a2)3 ; =4a2(27a6)=108a8,(4) (y n)2 y n-1.,aman=am-n,(am)n= amn,(ab)n= anbn,=a6b3,=y2n+n1=y3n1,导入新课,将几台型号相同的电视机叠放在一起组成“电视墙”,计算图中这块“电视墙。
17、8.3 完全平方公式与平方差公式,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平方差公式,1.理解并掌握平方差公式的推导和应用.(重点) 2.理解平方差公式的结构特征,并能运用公式进行简单的运算.(难点),学习目标,多项式与多项式是如何相乘的?,(x 3)( x5),=x25x3x15 =x28x15.,(a+b)(m+n),=am,+an,+bm,+bn,复习巩固,从前,有个狡猾的地主,把块边长为20米的正方形土地租给张老汉种植第二年,他对张老汉说:“我把这块地的边减少5米,相邻的另边增加5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张。
18、8.3 完全平方公式与平方差公式,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,第1课时 完全平方公式,学习目标,1.理解并掌握完全平方公式的推导过程、结构特点; (重点) 2.会运用公式进行运算;(难点),平方差公式: (a+b)(ab)=a2b2,2.公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积;右边是两数的平方差.,1. 由下面的两个图形你能得到哪个公式?,导入新课,复习巩固,情境引入,一块边长为a米的正方形实验田,因需要将其边长增加b米.形成四块实验田,以种植不同的新品种 (如图).用不同的形式表示实验田的。
19、8.2 整式乘法,第8章 整式乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,3.多项式与多项式相乘,学习目标,1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点),导入新课,复习引入,1.如何进行单项式与多项式乘法的运算?, 再把所得的积相加., 将单项式分别乘以多项式的各项;,2.进行单项式与多项式乘法运算时,要注意什么?, 不能漏乘:,即单项式要乘遍多项式的每一项;, 去括号时注意符号的确定.,问题1 (a+b)X= ?,(a+b)X=aX+bX,(a+b)X=(a+b)(m+n),当X=m+n时, (a+b)X=?,提出问。
20、17.2 一元二次方程的解法,第17章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,17.2.2 公式法,学习目标,1.经历求根公式的推导过程.(难点) 2.会用公式法解简单系数的一元二次方程.(重点),导入新课,复习引入,1.用配方法解一元二次方程的步骤有哪几步?,2.如何用配方法解方程2x2+4x+1=0?,讲授新课,任何一个一元二次方程都可以写成一般形式ax2+bx+c=0 能否也用配方法得出它的解呢?,合作探究,用配方法解一般形式的一元二次方程ax2+bx+c=0 (a0).,方程两边都除以a,得,解:,移项,得,配方,得,即,即,一元二次方程的求根公式,特别提醒,a 。