欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

精品六年级奥数培优教程讲义第22讲行程问题教师版

第第 2 27 7 讲讲 同余法解题同余法解题 余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和 同余定理),及中国剩余定理和有关弃九法原理的应用。 一、带余除法的定义及性质一、带余除法的定义及性质 一般地,如果 a 是整数,b 是整数(b0),若有 ab=qr,也就是

精品六年级奥数培优教程讲义第22讲行程问题教师版Tag内容描述:

1、第第 2 27 7 讲讲 同余法解题同余法解题 余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和 同余定理),及中国剩余定理和有关弃九法原理的应用。 一、带余除法的定义及性质一、带余除法的定义及性质 一般地,如果 a 是整数,b 是整数(b0),若有 ab=qr,也就是 abqr, 0rb;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r 时:我们称 a 可以被 b 整除,q 称为 a 除以 b 的商或完全商 (2)当0r 时:我们称 a 不可以被 b 整除,q 称为 a 除以 b 的商或不完全商 二、三大余数定理:二、三大余数定理。

2、第第 0606 讲讲 设数法解题设数法解题 读懂题目表达的意思; 能够快速找出所给题目中缺少的条件; 能够设出所缺条件,列出式子求解。 在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但 仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法设数代入法”, 即对题目中即对题目中“缺少缺少”的条件,随便假设一个数代入(当。

3、第第 22 讲讲 相遇问题相遇问题 根据“路程和速度和 时间”解决简单的直线上的相遇问题 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的 甲从 A 地到 B 地,乙从 B 地到 A 地,然后两人在途中相遇,实质上是甲和乙一起走了 A,B 之间这段路 程,如果两人同时出发,那么 相遇路程甲走的路程+乙走的路程甲的速度 相遇时间+乙的速度 相遇时间 (甲的速度+乙的速度) 相遇时间 速度和 相遇时间. 一般地,相遇问题的关系式为:速度和 相遇时间=路程和,即 S=vt 例例 1、 一辆客车与一辆货车同时从甲、 乙两个城市相。

4、第第 1818 讲讲 加法、乘法原理加法、乘法原理 理解加法、乘法原理的类型; 会用加法、乘法原理解应用题。 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,在具体做的时候,只要采用一类中 的一种方法就可以完成,并且几类方法是互不影响的。在每一类方法中,又有几种可能的做法,那么考虑 完成这件事所有可能的做法,就要用到加法原理来解决。 还有这样的一种情况就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方 法,要知道完成这件事情共有多少种方法,就要用到乘法原理来解决。 加法原理:加法。

5、第第 2626 讲讲 综合趣味题综合趣味题 通过实际操作寻找题目中蕴含的数学规律; 在操作过程中,体会数学规律的并且设计最优的策略和方案; 熟练掌握通过简单操作、染色、数论等综合知识解决策略问题。 实际操作与策略问题这类题目能够很好的提高学生思考问题的能力, 激发学生探索数学规 律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青 睐的这类题目的原因。 在日常生活中,常有一些妙趣横生、带有智力测试性质的问题,如:3 个小朋友同时唱一 首歌要 3 分钟,100 个小朋友同时唱这首歌要几分钟?。

6、第第 1616 讲讲 比较数的大小比较数的大小 小数的大小比较常用方法; 分数的大小比较常用方法; 数的估算时常用方法。 一、小数的大小比较常用方法一、小数的大小比较常用方法 为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位 数相同的小数.(如果是循环小数,就把它改写成一般写法的形式) 二二、分分数的大数的大小比较常用方法小比较常用方法 通分母:分子小的分数小. 通分子:分母小的分数大. 比倒数:倒数大的分数小. 与 1 相减比较法:分别与 1 相减,差大的分数小(适用于真分数) 重要结。

7、第第 1010 讲讲 工程问题工程问题 了解工作量、工作时间及工作效率的意思; 能够从题目中找出工作量、工作时间及工作效率; 理解三者之间的关系,并用三者关系解题。 工程问题指的是与工程建造有关的数学问题。然而其内容已不仅是工程方面的,还包括水 管注水、行路等许多方面。 工程问题常涉及到工作量、工作效率和工作时间,且这三者之间具有如下关系式: 工作量工作量= =工作效率工作效率工作时间工作时间 工作时间工作时间= =工作量工作量工作效率工作效率 工作效工作效率率= =工作量工作量工作时间工作时间 工作量指工作的多少,它可。

8、第第 24 讲讲 环形线路环形线路 掌握流水行船的基本概念; 能够准确处理流水行船中相遇和追及的速度关系。 本讲中的行程问题是特殊场地行程问题之一。是多人(一般至少两人)多次相遇或追及 的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一 个行程状态作出正确合理的线段图进行分析。 一、在做出线段图后,反复的在每一段路程上利用: 路程和=相遇时间 速度和 路程差=追及时间 速度差 二、解环形跑道问题的一般方法: 环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是 同。

9、第第 2020 讲讲 抽屉原理抽屉原理 理解抽屉原理的基本概念、基本用法; 掌握用抽屉原理解题的基本过程; 能够构造抽屉进行解题; 利用最不利原则进行解题; 利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。 一、一、知识点介绍知识点介绍 抽屉原理有时也被称为鸽笼原理, 它由德国数学家狄利克雷首先明确提出来并用来证明一 些数论中的问题,因此,也被称为狄利克雷原则抽屉原理是组合数学中一个重要而又基本的 数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用许多看起来 相当复杂,甚至无从下。

10、第第 29 讲讲 综合推理综合推理 学会对一个问题进行分析、推理; 利用我们的推理来解决一些较简单的问题; 通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇 于探索的意志品质。 解数学题,从已知条件到未知的结果需要推理,也需要计算,通常是计算与推理交替进 行,而且这种推理不仅是单纯的逻辑推理,而是综合运用了数学知识和专门的生活常识相 结合来运用。这种综合推理的问题形式多样、妙趣横生,也是小学数学竞赛中比较流行的 题型。 解答综合推理问题,要恰当地选择一个或几个条件作为突破口。统称。

11、第第 2121 讲讲 “三向”行程问题“三向”行程问题 熟练掌握“路程和速度和 时间”这一公式并能利用其解决相向行程问题(相遇问 题)、同向行程问题(追及问题)、背向行程问题(相离问题)。 一、一、相向行程问题(相向行程问题(相遇相遇问题)问题) 甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这 段路程,如果两人同时出发,那么 相遇路程甲走的路程+乙走的路程甲的速度相遇时间+乙的速度相遇时间 (甲的速度+乙的速度)相遇时间 速度和相遇时间. 一般地,相遇问题的关系式为:速度和相遇时间=。

12、第第 2727 讲讲 火车行程问题火车行程问题 清楚理解火车行程问题中的等量关系; 能够透过分析实际问题,提炼出等量关系; 培养分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力; 一、基本公式一、基本公式 路程=时间速度时间=路程速度 速度=路程时间 二、火车行程问题二、火车行程问题 有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。在考虑速度、时间和路 程三种数量关系时,必须考虑到火车本身的长度。如果遇到复杂的情况,可利用作图作图或演示演示的方法来帮助 解题。 解答火车行程。

13、第第 1717 讲讲 最大最小问题最大最小问题 学会在题目中判断出限制条件; 学会分数知识的综合运用; 从题目限制条件中分析最大最小问题。 在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最 少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为: 在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。 解答最大最小问题通常要用下面的方法: 1、枚举比较法。当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较; 2、着眼于极端情形,即。

14、第第 21 讲讲 逻辑推理逻辑推理问题问题 学会对一个问题进行分析、推理; 利用我们的推理来解决一些较简单的问题; 通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、 勇于探索的意志品质。 一、推理问题一、推理问题 解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。通常, 我们把主要依靠推理来解的数学题称为推理问题。 二、解题策略二、解题策略 解答推理问题常用的方法有:排除法、假设法、反证法。一般可以从以下几方面考虑: 1、选准突破口,分析时综合几个条件进行判断;。

15、第第 2828 讲讲- -“牛吃草”问题“牛吃草”问题 明确牛吃草问题中,必须把草的生长与牛吃的草问题,分开来分析解决,避免复杂错乱。 能够了解问题中的基本不变量并会求出,清楚牛吃草中等量的关系,能够利用求出的不变 量来求解变化的问题。 一、专题引入一、专题引入 英国物理学家牛顿曾经编了这样一道数学题:牧场上有一片草,每天生长的一样快,这片 草可供 10 头牛吃 22 天,或者供 16 头牛吃 10 天,如果供 22 头牛可吃几天?这道题就是有名 的牛吃草问题,也叫牛顿问题。 解决这一问题的关键是:在牛吃草的同时,草每天也在不断均匀。

16、 第第 1111 讲讲 周期工程问题周期工程问题 了解工作量、工作时间及工作效率的意思; 能够从题目中找出工作量、工作时间及工作效率; 理解三者之间的关系,并用三者关系解题。 熟练掌握工程问题的基本数量关系与一般解法;熟练掌握工程问题的基本数量关系与一般解法; (1 1) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理; (2 2) 根据题目中的实际情况能够正确进行单位根据题目中的实际情况能够正确进行单位“1”的统一和转换;的统一。

17、第第 2 25 5 讲讲 流水行船问题流水行船问题 掌握流水行船的基本概念; 能够准确处理流水行船中相遇和追及的速度关系。 一、参考系速度一、参考系速度 通常我们所接触的行程问题可以称作为“参考系速度为 0”的行程问题,例如当我们 研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度 的,所以我们只需要考虑人本身的速度即可。 二、参考系速度二、参考系速度“水速水速” 但是在流水行船问题中,我们的参考系将不再是速度为 0 的参考系,因为水本身也是 在流动的,所以这里我们必须考虑水流速度对船只速。

18、第第 22 讲讲 列方程解行程问题列方程解行程问题 学习列方程的思想; 利用列方程的思想解决行程问题; 通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇 于探索的意志品质。 一、列方程解行程问题一、列方程解行程问题 很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。 二、解题策略二、解题策略 列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程 时能充分利用我们熟悉的数量关系。因此,对于一些较复杂的行程问题,我 们可以用题中已知的条件和所设的未知数,。

19、第第 23 讲讲 分数百分数行程问题分数百分数行程问题 理解行程问题中的各种比例关系理解行程问题中的各种比例关系. 掌握寻找比例关系的方法来解行程问题掌握寻找比例关系的方法来解行程问题 比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。 从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活 性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于 工程问题、分数百分数应用题也有广泛的应用。 我。

20、第第 2222 讲讲 行程问题行程问题 环形路线上的相遇和追及问题; 速度行程问题与比例关系; 钟面上的行程问题。 问题问题回顾回顾 例例 1 1、一条船顺水航行 48 千米,再逆水航行 16 千米,共用了 5 小时;这知船顺水航行 32 千米,再逆水航 行 24 千米,也用 5 小时。求这条船在静水中的速度。 【解析】这道题的数量关系比较隐蔽,我们条件摘录整理如下: 顺水 逆水 时间 48 千米 16 千米 5 小时 32 千米 24 千米 5 小时 比较条件可知,船顺水航行 48 千米,改为 32 千米,即少行了 48-32=16(千米),那么逆水行程就由 16 千 米增加到 2。

【精品六年级奥数培优教程讲义第22讲行程问题教师版】相关DOC文档
【精品】六年级奥数培优教程讲义第27讲同余法解题(教师版)
【精品原创】六年级奥数培优教程讲义第06讲-设数法解题(教师版)
【精品原创】四年级奥数培优教程讲义第22讲相遇问题(教师版)
【精品】六年级奥数培优教程讲义第18讲 加法、乘法原理(教师版)
【精品】六年级奥数培优教程讲义第26讲 综合趣味题(教师版)
【精品】六年级奥数培优教程讲义第16讲 比较数的大小(教师版)
【精品原创】六年级奥数培优教程讲义第10讲-一般工程问题(教师版)
【精品】六年级奥数培优教程讲义第24讲环形线路(教师版)
【精品】六年级奥数培优教程讲义第20讲抽屉原理(教师版)
【精品】六年级奥数培优教程讲义第29讲 综合推理(教师版)
【精品】五年级奥数培优教程讲义第21讲 “三向”行程问题(教师版)
【精品】五年级奥数培优教程讲义第27讲火车行程问题(教师版)
【精品】六年级奥数培优教程讲义第17讲最大最小问题(教师版)
【精品】六年级奥数培优教程讲义第21讲 逻辑推理问题(教师版)
【精品】六年级奥数培优教程讲义第28讲-“牛吃草”问题(教师版)
【精品】六年级奥数培优教程讲义第11讲-周期工程问题(教师版)
【精品】六年级奥数培优教程讲义第25讲流水行船问题(教师版)
【精品】五年级奥数培优教程讲义第22讲列方程解行程问题(教师版)
【精品】六年级奥数培优教程讲义第23讲分数百分数行程问题(教师版)
【精品】六年级奥数培优教程讲义第22讲行程问题(教师版)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开