5.1二次函数九年级(下册)作者:古杨(连云港市新海实验中学)初中数学我们学习过的函数有哪几种?你能分别写出它们的表达形式吗?复习回顾5.1二次函数问题情境水滴激起的波纹不6.1图上距离与实际距离九年级(下册)作者:董海荣(连云港市西苑中学)初中数学测量课桌的长与宽,精确到1cm思考:“比”与“比值
九年级历史同步课件Tag内容描述:
1、九年级(下册),7.1 正切(2),作 者:赵立新(连云港外国语学校),初中数学,正切的定义:,如图,在RtABC中,C90,a、b分别是A的对边和邻边我们将A的对边a与邻边b的比叫做A的正切(tangent),记作tanA,即tanA ,忆一忆,7.1 正切(2),如图1,在RtABC中,C90,a、b分别是 A的对边和邻边A30,a1,求tanA.A45,求tanAA60,求tanA,思考,怎样计算任意一个锐角的正切值呢?,做一做,7.1 正切(2),如图2,我们可以这样来确定tan65的近似值:当一个点从点O出发沿着65线移动到点P时,这个点沿水平方向前进了1个单位长度,沿垂直方向上升了约2.14个单。
2、九年级(下册),初中数学,7.1 正切(1),作 者:赵立新(连云港外国语学校),问题1:人们在行走的过程中,自行车、汽车在行驶的过程中免不了爬坡如下图,哪个台阶更陡?,7.1 正切(1),问题2:哪个台阶最陡?你是如何判断的?,7.1 正切(1),问题3:在问题2中的、两个台阶,你认为哪个台阶更陡?你有什么发现?,8,4,7.1 正切(1),问题4:如图,一般地,如果锐角A的大小确定,我们可以作出RtAB1C1、RtAB2C2、RtAB3C3那么,你有什么发现?,7.1 正切(1),如图,在RtABC中,C90,a、b分别是A的对边和邻边我们将A的对边a与邻边b的比叫做A的正切。
3、7.5 解直角三角形(2),九年级(下册),作 者:徐 亮(赣榆外国语学校),初中数学,7.5 解直角三角形(2),【做一做】,根据条件,解下列直角三角形:在RtABC中, C90(1)已知A30,BC2;(2)已知B5,AB6;(3)已知AB10,BC5;(4)已知AC6,BC8,7.5 解直角三角形(2),【归纳】,解直角三角形问题分类:一、已知一边一角(锐角和直角边、锐角和 斜边);二、已知两边(直角边和斜边、两直角边),【例】 如图,在ABC中,AC8,B45,A30,求AB,7.5 解直角三角形(2),解直角三角形问题的前提条件是在直角三角形中,因为本题ABC不是直角三角形,。
4、7.5 解直角三角形(1),九年级(下册),作 者:陈安林(赣榆外国语学校),初中数学,7.5 解直角三角形(1),五星红旗你是我的骄傲,五星红旗我为你自豪,如何测量旗杆的高度?,【想一想】,7.5 解直角三角形(1),如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞多远?,8m,【做一做】,7.5 解直角三角形(1),如图,为测量旗杆的高度,在C点测得A点的仰角为30,点C到点B 的距离56.3,求旗杆的高度 (精确到0.1m),A,C,B,7.5 解直角三角形(1),如图,在RtABC中, C为直角,其余5个元素之间有。
5、九年级(下册),作 者:熊诚燕(连云港市新海实验中学),初中数学,5.2 二次函数的图像和性质(4),函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,5.2 二次函数的图像和性质(4),(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,5.2 二次函数的图像和性。
6、九年级(下册),作 者:徐 进(常州市北环中学),初中数学,5.2 二次函数的图像和性质(3),你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,5.2 二次函数的图像和性质(3),(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,5.2 二次函数的图像和性质(3),(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数y。
7、5.2 二次函数的图像和性质(2),九年级(下册),作 者:徐 进(常州市北环中学),初中数学,请在同一坐标系中画出函数 和 、 和 的图像,画一画,5.2 二次函数的图像和性质(2),函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,5.2 二次函数的图像和性质(2),这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,5.2 二次函数的图像和性。
8、5.2 二次函数的图像和性质(1),九年级(下册),作 者:张 玲 (连云港市新海实验中学),初中数学,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,5.2 二次函数的图像和性质(1),例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,5.2 二次函数的图像和性质(1),观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,5.2 二次函数的图像和性质(1),例2 画出yx2图像。
9、第九单元 溶液 课题1 溶液的形成,第一课时,第一课时,第二课时,第一课时,溶 液,在卫生站或医院,护士给病人注射之前会将固体药剂制成注射 液,这是为什么呢? 是不是所有的药品都 能溶于水呢?,1. 认识溶解现象,知道溶液、溶剂、溶质等概念,知道水是最常见的溶剂,酒精、汽油是常见的溶剂。,2.了解溶液在生活、生产和科学研究中的广泛用途。,3. 学习科学探究和科学实验的方法,练习观察、记录、分析实验现象。,4,点击图片播放 视频,溶液的形成,在20mL水中加入一匙蔗糖,用玻璃棒搅拌,会观察到什么现象? 若换成食盐呢?,蔗糖溶解,食盐溶。
10、2.2切线长定理一、选择题1如图K491,PA,PB分别切O于点A,B,E是O上一点,且AEB60,则P的度数为()A45 B50 C55 D60图K4912一个钢管放在V形架内,图K492是其截面图,O为钢管的圆心如果钢管的半径为25 cm,MPN60,那么OP的长为()图K492A50 cm B25 cm C. cm D50 cm3如图K493,PA,PB是O的切线,切点分别是A,B.若APB60,PA4,则O的半径为()A4 B. C. D3图K4934如图K494,PA,PB分别切O于点A,B,AC是O的直径,连结AB,BC,OP,则与PAB相等的角(不包括PAB本身)有()图K494A1个 B2个 C3个 D4个52017无锡如图K495,菱形。
11、2.2 切线长定理 同步练习一、单选题1、以下命题正确的是()A、圆的切线一定垂直于半径;B、圆的内接平行四边形一定是正方形;C、直角三角形的外心一定也是它的内心;D、任何一个三角形的内心一定在这个三角形内2、下列说法: 三点确定一个圆;垂直于弦的直径平分弦;三角形的内心到三条边的距离相等;圆的切线垂直于经过切点的半径其中正确的个数是( ) A、0B、2C、3D、43、如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE以下结论:DEOF;AB+CD=BC;PB=PF;AD2=4ABDC其中正确的是()A、B。
12、1.3解直角三角形(三)一、选择题(共5小题)1、如图所示,渔船在A处看到灯塔C在北偏东60方向上,渔船正向东方向航行了12海里到达B处,在B处看到灯塔C在正北方向上,这时渔船与灯塔C的距离是()A、12海里 B、6海里C、6海里 D、4海里2、如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得ACB=,那么AB等于()2A、msin米 B、mtan米C、mcos米 D、米3、如图,小明要测量河内小岛B到河边公路l的距离,在A点测得BAD=30,在C点测得BCD=60,又测得AC=50米,则小岛B到公路l的距离为()米A、25 B。
13、1.3 解直角三角形(二)一、选择题(共5小题)1、身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m100m95m90m线与地面夹角30454560A、甲 B、乙C、丙 D、丁2、如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为,那么滑梯长l为()A、 B、C、 D、hsin3、河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是()A、5米 B、10米C、15米 。
14、1.3解直角三角形(一)一、选择题(共5小题)1、在直角坐标系xOy中,点P(4,y)在第一象限内,且OP与x轴正半轴的夹角为60,则y的值是()A、 B、C、8 D、22、如图,平面直角坐标系中,直线AB与x轴的夹角为60,且点A的坐标为(2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A、B、C、D、3、如图,已知OA=6,AOB=30,则经过点A的反比例函数的解析式为()A、 B、C、 D、4、如图,已知在矩形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点若sinAEH=,AE=5,则四边形EFGH的面积是()A、240 B、60C、120 D、1695、如图,点C在线段AB上。
15、2.2切线长定理同步提升练习题一、选择题1下列说法:三点确定一个圆;垂直于弦的直径平分弦;三角形的内心到三条边的距离相等;圆的切线垂直于经过切点的半径其中正确的个数是( )A、0 B、2 C、3 D、42如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A、点(0,3) B、点(2,3) C、点(5,1) D、点(6,1)3已知O的半径是4,P是O外的一点,且PO8,从点P引O的两条切线,切点分别是A,B,则AB0A4 B4 C4 D2 4如图,AB,CD分别为O1,O2的弦,AC,BD为两圆的公切线且交于点P.若PC2,CD3。
16、人类探索细胞的历史人类探索细胞的历史 基础过关 知识点一 细胞的发现与细胞学说的建立 1施莱登和施旺共同提出( ) A细胞学说 B分离定律 C进化学说 D中心法则 答案 A 解析 施莱登和施旺共同提出细胞学说, 孟德尔提出分离定律, 达尔文提出关于生物进化的 自然选择学说,克里克提出中心法则。 2下列关于细胞学说及其内容的叙述中,错误的是( ) A细胞学说认为细胞分为真核细胞和原核细胞 B细胞学说认为一切动植物都是由一个细胞或多个细胞组成的 C所有的细胞必定是由已存在的活细胞产生的 D细胞学说的建立者主要是德国科学家施莱登、施旺 答。
17、6.3 相似图形,九年级(下册),作 者:刘倩(连云港市东港中学新校区),初中数学,欣赏,6.3 相似图形,下列各组图形有什么共同的特征?你还能举出具有这样特征的图形吗?,形状相同的图形叫做相似形(similar figures),6.3 相似图形,“形状相同”的两个图形具有怎样的特征呢?,1下图(1)中的两个正三角形“形状相同”,它们的边和角有怎样的数量关系?图(2)中的两个“形状相同”的三角形呢?,C,B,A,A,A,A,B,B,B,C,C,C,(1),(2),6.3 相似图形,“形状相同”的两个图形具有怎样的特征呢?,2下图(1)中的两个正方形“形状相同”,它们的边和角。
18、6.2 黄金分割,九年级(下册),作 者:张成培(连云港市西苑中学),初中数学,同学们,请问你们去过上海吗?参观过东方明珠电视塔吗?谈谈你的感想! 上海东方明珠电视塔设计巧妙,整个塔体挺拔秀丽,现请你度量出图中线段AB、BC、AC的长度,并计算线段AB与AC的比值和线段BC与AB的比值,6. 黄金分割,同学们,你们喜欢芭蕾舞吗?请欣赏一段芭蕾舞!,6. 黄金分割,芭蕾舞演员身体各部分之间适当的比例给人以匀称、协调的美感请你量出图中线段AB、BC、AC的长度,并计算线段AB与AC的比值和线段BC与AB的比值,6. 黄金分割,观察习题6.1第5题“你最喜欢。
19、6.1 图上距离与实际距离,九年级(下册),作 者:董海荣(连云港市西苑中学),初中数学,测量课桌的长与宽,精确到1cm,思考:“比”与“比值”一样吗?,问题1:写出长与宽的比,问题2:写出长与宽的比值,6.1 图上距离与实际距离,测量数学书的长与宽,精确到1cm,问题1:写出长与宽的比,问题2:写出长与宽的比值,比较:课桌的长与宽的比,数学书的长与宽的比值相等吗?,6.1 图上距离与实际距离,阅读课本P40的“尝试与交流”,在四条线段a、b、c、d中,如果a与b的比等于c与d的比,那么这四条线段叫做成比例线段,6.1 图上距离与实际距离,怎样判断4条。
20、5.1 二次函数,九年级(下册),作 者:古 杨 (连云港市新海实验中学),初中数学,我们学习过的函数有哪几种?你能分别写出它们的表达形式吗?,复习回顾,5.1 二次函数,问题情境,水滴激起的波纹不断向外扩展,扩大的圆的周长C、面积S分别与半径r之间有怎样的函数关系?这两个函数表达式有何差异?,5.1 二次函数,问题探究,用16米长的篱笆围成矩形的生物园饲养小兔,怎样围可使小兔的活动范围较大?你能说清其中的道理吗?,设长方形的长为x米,则宽为(8x)米,矩形面积 y与长 x之间的函数关系式为: yx28x,5.1 二次函数,一面长与宽之比为2:1的矩形镜。