目录上一页空白页目录上一页空白页目录上一页空白页目录上一页空白页目录上一页空白页目录上2.2平面向量的线性运算平面向量的线性运算22.1向量加法运算及其几何意义向量加法运算及其几何意义学习目标1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法
绝对值几何意义Tag内容描述:
1、3.1.2 复数的几何意义,第三章 3.1 数系的扩充和复数的概念,学习目标 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 复平面,思考1,答案,答案 任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应.,实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?,思考2,答案,答案 正确,错误. 因为原点在虚轴上,而。
2、3.1.2 复数的几何意义,第三章 3.1 数系的扩充和复数的概念,学习目标 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 复平面,思考1,实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?,答案,答案 任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应.,答案 正确,错误.因为原点在虚轴上,而其表示实数,。
3、3.1.3 导数的几何意义,第三章 3.1 变化率与导数,学习目标 1.了解导函数的概念,理解导数的几何意义. 2.会求简单函数的导函数. 3.根据导数的几何意义,会求曲线上某点处的切线方程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 导数的几何意义,(1)切线的概念:如图,对于割线PPn,当点Pn趋近于点P时,割线PPn趋近于确定的位置,这个确定位置的 称为点P处的切线.,直线PT,(2)导数的几何意义:函数f(x)在xx0处的导数就是切线PT的斜率k,即k _f(x0). (3)切线方程: 曲线yf(x)在点(x0,f(x0)处的切线方程为 . 特别提醒:曲线的切线。
4、专题 06 导数的几何意义灵活应用【学习目标】1了解导数概念的实际背景2理解导数的意义及几何意义3能根据导数定义求函数 yC (C 为常数) ,yx,y x 2,yx 3,y ,y 的导数1x x4能利用基本初等函数的导数公式及导数运算法则进行某些函数的求导【知识要点】1平均变化率及瞬时变化率(1)函数 yf( x)从 x1 到 x2 的平均变化率用_表示,且 .yx f(x2) f(x1)x2 x1(2)函数 yf( x)在 xx 0 处的瞬时变化率是:0limx 0lix .limx 0yx lim x 0f(x0 x) f(x0)x2导数的概念(1)函数 yf( x)在 xx 0 处的导数就是函数 yf( x)在 xx 0 处的瞬时变化率,记。
5、专题 06 导数的几何意义灵活应用【学习目标】1了解导数概念的实际背景2理解导数的意义及几何意义3能根据导数定义求函数 yC (C 为常数) ,yx,y x 2,yx 3,y ,y 的导数1x x4能利用基本初等函数的导数公式及导数运算法则进行某些函数的求导【知识要点】1平均变化率及瞬时变化率(1)函数 yf( x)从 x1 到 x2 的平均变化率用_表示,且 .yx f(x2) f(x1)x2 x1(2)函数 yf( x)在 xx 0 处的瞬时变化率是:0limx 0lix .limx 0yx lim x 0f(x0 x) f(x0)x2导数的概念(1)函数 yf( x)在 xx 0 处的导数就是函数 yf( x)在 xx 0 处的瞬时变化率,记。
6、22导数的几何意义一、选择题1已知曲线yx22上一点P,则在点P处的切线的倾斜角为()A30 B45C135 D165考点求函数在某点处的切线斜率或切点坐标题点求函数在某点处的切线的倾斜角答案B解析曲线yx22在点P处的切线斜率为k1,所以在点P处的切线的倾斜角为45,故选B.2下列各点中,在曲线yx2上,且在该点处的切线倾斜角为的是()A(0,0) B(2,4)C. D.考点求函数在某点处的切线斜率或切点坐标题点求函数在某点处的切点坐标答案D解析设切点坐标为(x0,y0),则当xx0时,y2x0tan 1,所以x0,y0.3.如图,函数yf(x)的图像在点P(2,y)处的切线是l,则f(2)f(2)。
7、2.2导数的几何意义一、选择题1若曲线yf(x)在点(x0,f(x0)处的切线方程为2xy10,则()Af(x0)0 Bf(x0)0Cf(x0)0 Df(x0)不存在2曲线yx22在点(1,)处切线的倾斜角为()A1 B.C. D3曲线yx33x21在点P处的切线平行于直线y9x1,则切线方程为()Ay9xBy9x26Cy9x26Dy9x6或y9x264已知函数yf(x)的图像如图所示,则函数yf(x)的图像可能是()5设f(x)为可导函数,且满足li 1,则曲线yf(x)在点(1,f(1)处的切线斜率为()A2 B1 C1 D26设P为曲线C:yf(x)x22x3上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P的横坐标的取值范围为()A(, B1,0C0,1 D,。
8、22导数的几何意义学习目标1.理解导数的几何意义.2.根据导数的几何意义,会求曲线上某点处的切线方程.3.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程知识点一割线思考函数yf(x)在x0,x0x上的平均变化率为,由下图你能说出它的几何意义吗?答案表示过点A(x0,f(x0),B(x0x,f(x0x)的斜率梳理割线的定义函数yf(x)在x0,x0x的平均变化率为,它是过A(x0,f(x0)和B(x0x,f(x0x)两点的直线的斜率这条直线称为曲线yf(x)在点A处的一条割线知识点二导数的几何意义如图,Bn的坐标为(xn,f(xn)(n1,2,3,4,),A的坐标为(x0,y0),直线AT。
9、第二章 2 导数的概念及其几何意义,2.2 导数的几何意义,学习目标,1.理解导数的几何意义. 2.根据导数的几何意义,会求曲线上某点处的切线方程. 3.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 割线,梳理 割线的定义 函数yf(x)在x0,x0x的平均变化率为 ,它是过A(x0,f(x0)和B(x0x,f(x0x)两点的直线的 .这条直线称为曲线yf(x)在点A处的一条割线.,斜率,知识点二 导数的几何意义,如图,Bn的坐标为(xn,f(xn)(n1,2,3,4,),A的坐标为(x0,y0),直线AT为在点P处的切线.,。
10、3.3复数的几何意义学习目标1.了解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.理解向量加法、减法的几何意义,能用几何意义解决一些简单问题知识点一复平面思考实数可用数轴上的点来表示,平面向量可以用坐标表示,类比一下,复数怎样来表示呢?答案任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应关系梳理建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除。
11、22.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 一、选择题 1下列说法中正确的是( ) Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若|b|2|a|,则 b 2a D若 b 2a,则|b|2|a| 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D 解析 显然当 b 2a 时,必有|b|2|a|. 23(2a4b)等于( ) A5a7b B。
12、22.2 向量减法运算及其几何意义向量减法运算及其几何意义 一、选择题 1化简PM PN MN 所得的结果是( ) A.MP B.NP C0 D.MN 考点 向量加减法的综合运算及应用 题点 利用向量的加、减法化简向量 答案 C 解析 PM PN MN NM MN 0. 2在平行四边形 ABCD 中,AB CBDC 等于( ) A.BC B.AC C.DA D.BD 考点 向量加减法的综合。
13、 2.2 平面向量的线性运算平面向量的线性运算 22.1 向量加法运算及其几何意义向量加法运算及其几何意义 一、选择题 1化简CB AD BA 等于( ) A.DB B.CA C.DC D.CD 考点 向量加法运算及运算律 题点 化简向量 答案 D 2.如图, 四边形 ABCD 是梯形, ADBC, 对角线 AC 与 BD 相交于点 O, 则OA BC ABDO 等于( ) A.CD 。
14、2.2.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 基础过关 1将 1 122(2a8b)4(4a2b)化简成最简形式为( ) A2ab B2ba Cab Dba 解析 原式 1 12(4a16b16a8b) 1 12(24b12a)2ba 答案 B 2在ABC 中,已知 D 是 AB 边上的一点,若AD 2DB ,CD 1 3CA CB,则 等于 ( ) A1 3 B2 3 C1 2 。
15、 2.2 平面向量的线性运算平面向量的线性运算 2.2.1 向量加法运算及其几何意义向量加法运算及其几何意义 基础过关 1下列等式错误的是( ) Aa00aa BAB BCAC0 CAB BA0 DCA ACMN NP PM 解析 AB BCACACAC2AC0,故 B 错 答案 B 2如图所示,在四边形 ABCD 中,AC ABAD ,则四边形 ABCD 为( ) A矩形 B正方形 C平行四。
16、2.2.2 向量减法运算及其几何意义向量减法运算及其几何意义 基础过关 1化简AB BD AC CD ( ) AAD BDA CBC D0 解析 AB BD AC CD (AB BD )(AC CD )AD AD 0 答案 D 2下列等式中,正确的个数为( ) 0aa;(a)a;a(a)0;a0a;aba(b);a( a)0 A3 B4 C5 D6 解析 根据相反向量的概念知正确,所以正确的。
17、22.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运 算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法, 并能熟练地运用这些知识处理有关共线向量问题 知识点一 向量数乘的定义 实数 与向量 a 的积是一个向量,这种运算叫做向量的数乘,记作 a,其长度与方向规定如 下: 。
18、22.2 向量减法运算及其几何意义向量减法运算及其几何意义 学习目标 1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意 义.3.能熟练地进行向量的加、减运算 知识点一 相反向量 1定义:与 a 长度相等,方向相反的向量,叫做 a 的相反向量,记作a. 2性质 (1)对于相反向量有:a(a)(a)a0. (2)若 a,b 互为相反向量,则 ab,ba,ab0. (3)零向。
19、 2.2 平面向量的线性运算平面向量的线性运算 22.1 向量加法运算及其几何意义向量加法运算及其几何意义 学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向 量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运 算.3.了解向量加法的交换律和结合律, 并能依据几何意义作图解释向量加法运算律的合理性 知识点一 向量加法的定义及其运算法。
20、目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,目录,上一页,空白页,。