31.3 二倍角的正弦二倍角的正弦、余弦余弦、正切公式正切公式 一、选择题 1若 sin 1 3,则 cos 2 等于( ) A.8 9 B.7 9 C7 9 D8 9 考点 二倍角的正弦、余弦、正切公式 题点 利用公式求二倍角的余弦值 答案 B 解析 sin 1 3, cos 212sin212
课时对点习含答案Tag内容描述:
1、31.3 二倍角的正弦二倍角的正弦、余弦余弦、正切公式正切公式 一、选择题 1若 sin 1 3,则 cos 2 等于( ) A.8 9 B.7 9 C7 9 D8 9 考点 二倍角的正弦、余弦、正切公式 题点 利用公式求二倍角的余弦值 答案 B 解析 sin 1 3, cos 212sin212 1 3 27 9. 2已知 sin cos 4 3,则 sin 2 等于( ) A7 9。
2、 1.2 任意角的三角函数任意角的三角函数 12.1 任意角的三角函数任意角的三角函数(一一) 一、选择题 1sin(315 )的值是( ) A 2 2 B1 2 C. 2 2 D.1 2 考点 诱导公式一 题点 诱导公式一的应用 答案 C 解析 sin(315 )sin(360 45 )sin 45 2 2 . 2已知角 的终边上一点 P 与点 A(3,2)关于 y 轴对称,角 的终边上一点 。
3、12.1 任意角的三角函数任意角的三角函数(二二) 一、选择题 1函数 ytan x 3 的定义域为( ) A. x x 3,xR B. x xk 6,kZ C. x xk5 6 ,kZ D. x xk5 6 ,kZ 考点 单位圆与三角函数线 题点 利用三角函数线解不等式 答案 C 解析 x 3k 2,kZ,xk 5 6 ,kZ. 2角 5和角 6 5 有相同的( 。
4、实验:探究弹力与弹簧伸长量的关系一、选择题1.如图1所示是“探究弹力与弹簧伸长量的关系”的实验装置,小东认真操作、正确读数后得到的数据记录如下表由表可知()图1次数物理量1234F/N00.981.962.94L/cm12.014.016.018.0x/cm02.04.06.0A每个钩码的质量为0.98 kgB实验所用刻度尺的分度值是1 mmC每挂一个钩码,弹簧伸长12.0 cmD实验时弹簧伸长量未超过弹性限度答案D解析每个钩码的质量m kg0.1 kg,A错;由于弹簧的长度记录到整数厘米的下一位,故所用刻度尺为厘米刻度尺,最小分度为1 cm,B错;由表可以看出,每挂一个钩码,弹簧都要伸长2 c。
5、22.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 一、选择题 1下列说法中正确的是( ) Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若|b|2|a|,则 b 2a D若 b 2a,则|b|2|a| 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D 解析 显然当 b 2a 时,必有|b|2|a|. 23(2a4b)等于( ) A5a7b B。
6、 3.2 简单的三角恒等变换简单的三角恒等变换 一、选择题 1已知 cos 1 5, 3 2 ,2 ,则 sin 2等于( ) A. 10 5 B 10 5 C.2 6 5 D.2 5 5 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A 解析 3 2 ,2 , 2 3 4 , , sin 2 1cos 2 10 5 . 2设 是第二象限角,tan 4 3。
7、 3.1 两角和与差的正弦、余弦和正切公式两角和与差的正弦、余弦和正切公式 31.1 两角差的余弦公式两角差的余弦公式 一、选择题 1cos 295 sin 70 sin 115 cos 110 的值为( ) A. 2 2 B 2 2 C. 3 2 D 3 2 考点 两角差的余弦公式 题点 利用两角差的余弦公式化简、求值 答案 A 解析 原式cos 115 cos 20 sin 115 sin。
8、14.3 正切函数的性质与图象正切函数的性质与图象 一、选择题 1函数 ytan x 5 ,xR 且 x 3 10k,kZ 的一个对称中心是( ) A(0,0) B. 5,0 C. 4 5,0 D(,0) 考点 正切函数的周期性与对称性 题点 正切函数的对称性 答案 C 2函数 f(x)tan x 4 的单调递增区间为( ) A. k 2,k 2 ,kZ B(k,(k1),kZ C。
9、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(一一) 一、选择题 1下列是定义在 R 上的四个函数图象的一部分,其中不是周期函数的是( ) 考点 正弦、余弦函数的周期性 题点 正弦、余弦函数的周期性 答案 D 解析 对于 D,x(1,1)时的图象与其他区间图象不同,不是周期函数 2下列说法中正确的是( ) A当 x 2时,sin x 6 sin x,所以 6不是 f(x)si。
10、 2.5 平面向量应用举例平面向量应用举例 25.1 平面几何中的向量方法平面几何中的向量方法 一、选择题 1已知 A,B,C,D 四点的坐标分别为(1,0),(4,3),(2,4),(0,2),则此四边形为( ) A梯形 B菱形 C矩形 D正方形 考点 平面几何中的向量方法 题点 判断多边形的形状 答案 A 解析 AB (3,3),CD (2,2), AB 3 2CD ,AB 与CD 共线 又。
11、22.2 向量减法运算及其几何意义向量减法运算及其几何意义 一、选择题 1化简PM PN MN 所得的结果是( ) A.MP B.NP C0 D.MN 考点 向量加减法的综合运算及应用 题点 利用向量的加、减法化简向量 答案 C 解析 PM PN MN NM MN 0. 2在平行四边形 ABCD 中,AB CBDC 等于( ) A.BC B.AC C.DA D.BD 考点 向量加减法的综合。
12、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 一、选择题 1以下对正弦函数 ysin x 的图象描述不正确的是( ) A在 x2k,2(k1)(kZ)上的图象形状相同,只是位置不同 B介于直线 y1 与直线 y1 之间 C关于 x 轴对称 D与 y 轴仅有一个交点 考点 正弦函数的图象 题点 正弦函数图象的应用 答案 C 解析 画。
13、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(二二) 一、选择题 1符合以下三个条件: 在 0, 2 上单调递减; 以 2 为周期; 是奇函数 这样的函数是( ) Aysin x Bysin x Cycos x Dycos x 考点 正弦、余弦函数性质的综合应用 题点 正弦、余弦函数性质的综合应用 答案 B 解析 在 0, 2 上单调递减,可以排除 A,是奇函数可以排除 C,D。
14、 2.2 平面向量的线性运算平面向量的线性运算 22.1 向量加法运算及其几何意义向量加法运算及其几何意义 一、选择题 1化简CB AD BA 等于( ) A.DB B.CA C.DC D.CD 考点 向量加法运算及运算律 题点 化简向量 答案 D 2.如图, 四边形 ABCD 是梯形, ADBC, 对角线 AC 与 BD 相交于点 O, 则OA BC ABDO 等于( ) A.CD 。
15、25.2 向量在物理中的应用举例向量在物理中的应用举例 一、选择题 1两个大小相等的共点力 F1,F2,当它们夹角为 90 时,合力大小为 20 N,则当它们的夹 角为 120 时,合力大小为( ) A40 N B10 2 N C20 2 N D10 3 N 考点 向量在力学中的应用 题点 求合力 答案 B 解析 |F1|F2|F|cos 45 10 2, 当 120 ,由平行四边形法则知 。
16、23.4 平面向量共线的坐标表示平面向量共线的坐标表示 一、选择题 1下列向量中,与向量 c(2,3)不共线的一个向量 p 等于( ) A(5,4) B. 1,3 2 C. 2 3,1 D. 1 3, 1 2 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 A 解析 因为向量 c(2,3),对于 A,243570,所以 A 中向量与 c 不共线 2下列各组向量中,能作。
17、实验:研究匀变速直线运动1在“探究小车速度随时间变化的规律”实验中,下列说法不正确的是()A纸带上可以每隔任意相同数量的点选取一个计数点B使用刻度尺测量长度时,要进行估读C作vt图象时,所描曲线必须经过每一个点D在数据处理时,常用公式法和图象法解析实验中可以每隔任意相同数量的点选取一个计数点,但相隔四个点时取计数点时间间隔为0.1 s(打点频率为50 Hz),计算时更方便,选项A正确;使用刻度尺测量长度时,要进行估读,选项B正确;作vt图象时,应使尽量多的点落在线上,离线较远的点大胆舍弃,选项C错误;处理数据时,常选择公。
18、 2.3 平面向量的基本定理及坐标表示平面向量的基本定理及坐标表示 23.1 平面向量基本定理平面向量基本定理 一、选择题 1如图所示,矩形 ABCD 中,BC 5e 1,DC 3e2,则OC 等于( ) A.1 2(5e13e2) B.1 2(5e13e2) C.1 2(3e25e1) D.1 2(5e23e1) 考点 平面向量基本定理 题点 用基底表示向量 答案 A 解析 OC 1 2AC。
19、11.2 弧度制弧度制 一、选择题 1下列说法中,错误的是( ) A“度”与“弧度”是度量角的两种不同的度量单位 B1 的角是周角的 1 360,1 rad 的角是周角的 1 2 C1 rad 的角比 1 的角要大 D用角度制和弧度制度量角,都与圆的半径有关 考点 弧度制 题点 弧度制定义、应用 答案 D 解析 根据 1 度,1 弧度的定义可知只有 D 是错误的,故选 D. 2下列说法中,错误的。
20、1.11.1 任意角和弧度制任意角和弧度制 1 11.11.1 任意角任意角 一、选择题 1下列命题正确的是( ) A终边在 x 轴非正半轴上的角是零角 B第二象限角一定是钝角 C第四象限角一定是负角 D若 k 360 (kZ),则 与 终边相同 考点 任意角的概念 题点 任意角的概念 答案 D 解析 终边在 x 轴非正半轴上的角为 k 360 180 ,kZ,零角为 0 ,所以 A 错误;48。