欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

空间和直线的平行

复习 的倾斜角线叫做直角向上的方向之间所成的轴正向与直线轴为基准,轴相交时,我们以与当直线llxxxl1倾斜角 的斜率的正切值叫做这条直线把一条直线的倾斜角2斜率 表示,斜率常用小写字母 ktank即:,则过的若已知倾斜角为21222111,内,不正确;命题直线a与平面可以是相交关系,不正确;命题a

空间和直线的平行Tag内容描述:

1、复习 的倾斜角线叫做直角向上的方向之间所成的轴正向与直线轴为基准,轴相交时,我们以与当直线llxxxl1倾斜角 的斜率的正切值叫做这条直线把一条直线的倾斜角2斜率 表示,斜率常用小写字母 ktank即:,则过的若已知倾斜角为21222111。

2、内,不正确;命题直线a与平面可以是相交关系,不正确;命题a可以在平面内,不正确;命题正确.答案A2.设m,n是不同的直线,是不同的平面,且m,n,则“”是“m且n”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析若m,n,则m且n;反之若m,n,m且n,则与相交或平行,即“”是“m且n”的充分不必要条件.答案A3.(2017长郡中学质检)如图所示的三棱柱ABCA1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面 B.平行C.相交 D.以上均有可能解析在三棱柱ABCA1B1C1中,ABA1B1,AB平面ABC,A1B1平面ABC,A1B1平面ABC,过A1B1的平面与平面ABC交于DE.DEA1B1,DEAB.答案B4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别。

3、平面也可能相交,故C错误;而D为直线和平面垂直的性质定理,正确2设,是两个不同的平面,m是直线且m,“m”是“”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件解析:选B.当m时,过m的平面与可能平行也可能相交,因而mD/;当时,内任一直线与平行,因为m,所以m.综上知,“m”是“”的必要而不充分条件3(2019杭州中学高三期中)已知m,n是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A若,则B若mn,m,n,则C若mn,m,n,则D若mn,m,则n解析:选C.对于A,若,则与平行或相交;对于B,若mn,m,n,则与平行或相交;对于D,若mn,m,则n或n在平面内4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AEEBAFFD14,又。

4、直线与此平面平行(简记为“线线平行线面平行”)l性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行线线平行”)lb2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行面面平行”)性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行ab概念方法微思考1一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?提示不都平行该平面内的直线有两类,一类与该直线平行,一类与该直线异面2一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)若一条直线平行于一个平面内的一条直线,则这条直线。

5、课时作业,1,基础知识 自主学习,PART ONE,1.线面平行的判定定理和性质定理,知识梳理,ZHISHISHULI,此平面内,_ _ _,la,a,l,交线,_ _ _,la,l,b,2.面面平行的判定定理和性质定理,相交直线,相交,交,线,_ _ _ _ _,a,b,abP,a,b,_ _ _,a,a,b,1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?,提示 不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.,【概念方法微思考】,2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?,提示 平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.,题组一 思考辨析,1.判断下列结论是否正确(请在括号中打“”或“”) (1)若一条直线平行于一个平面内的一条直线。

6、第四节第四节 直线直线平面平行的判定和性质平面平行的判定和性质 知识重温知识重温 一必记 3 个知识点 1直线与平面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定定理 平面外一条直线与此 平面内的一条直线平 行,则该直线与此平。

7、2.1.22.1.2 两条直线平行和垂直的判定两条直线平行和垂直的判定 课时课时对点对点练练 1过点 A2,5和点 B4,5的直线与直线 y3 的位置关系是 A相交 B平行 C重合 D以上都不对 答案 B 解析 斜率都为 0 且不重合,所以。

8、共点,没有公共点,a,aA,a,知识点二 直线与平面平行的判定,思考1 如图,一块矩形木板ABCD的一边AB在平面内,把这块木板绕AB转动,在转动过程中,AB的对边CD(不落在内)和平面有何位置关系?,答案 平行.,思考2 如图,平面外的直线a平行于平面内的直线b.这两条直线共面吗?直线a与平面相交吗?,答案 由于直线ab,所以两条直线共面,直线a与平面不相交.,梳理 直线与平面平行的判定定理,不在一个平面内,平面内,平行,m,l,知识点三 直线与平面平行的性质,思考1 如图,直线l平面,直线a平面,直线l与直线a一定平行吗?为什么?,答案 不一定,因为还可能是异面直线.,思考2 如图,直线l平面,直线l平面,平面平面直线m,满足以上条件的平面有多少个?直线l,m有什么位置关系?,答案 无数个,lm.,梳理 直线与平面平行的性质定理,平行,l,l,思考辨析 判断正误 1.若直线l上有两点到平面的距离相等,则l平面.( ) 2.若直线l与平面平行,则l与平面内的任意一条直线平行.( ) 3.。

9、2.1.2 两条直线平行和垂直的判定两条直线平行和垂直的判定 一选择题 1.已知过点 P3,2m和点 Qm,2的直线与过点 M2,1和点 N3,4的直线平行,则 m 的值是 A.1 B.1 C.2 D.2 答案 B 解析 因为 kMN413。

10、2 2. .1.21.2 两条直线平行和垂直的判定两条直线平行和垂直的判定 1过点 A2,5和点 B4,5的直线与直线 y3 的位置关系是 A相交 B平行 C重合 D以上都不对 答案 B 解析 斜率都为 0 且不重合,所以平行 2已知过 A。

11、线的传递性,空间,ac,知识点二 等角定理,思考 观察图,在长方体ABCDABCD中,ADC与ADC,ADC与DAB的两边分别对应平行,这两组角的大小关系如何?,答案 从图中可以看出,ADCADC,ADCDAB180.,梳理 等角定理 如果一个角的两边与另一个角的两边分别 ,并且 ,那么这两个角相等.,对应平行,方向相同,知识点三 空间四边形,顺次连接 的四点A,B,C,D所构成的图形,叫做空间四边形.这四个点中的各个点叫做空间四边形的 ;所连接的相邻顶点间的线段叫做空间四边形的 ;连接不相邻的顶点的线段叫做空间四边形的.空间四边形用表示顶点的四个字母表示.,不共面,顶点,边,对角线,思考辨析 判断正误 1.若ABAB,ACAC,则BACBAC.( ) 2.没有公共点的两条直线是异面直线.( ) 3.若a,b是两条直线,是两个平面,且a,b,则a,b是异面直线.( ),。

12、2.1.2 两条直线平行和垂直的判定两条直线平行和垂直的判定 课标要求 素养要求 1.能根据斜率判定两条直线平行或垂直. 2.能应用两条直线平行或垂直解决有关 问题. 通过学习两条直线平行与垂直的判定, 提升数学抽象数学运算及逻辑推理素 养。

13、面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另一条直线可能在平面内.3.已知直线l平面,P,那么过点P且平行于l的直线()A.只有一条,不在平面内B.只有一条,在平面内C.有两条,不一定都在平面内D.有无数条,不一定都在平面内答案B解析如图所示,l平面,P,直线l与点P确定一个平面,m,Pm,lm且m是唯一的.4.如图,长方体ABCDA1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G,H,则GH与AB的位置关系是()A.平行B.相交C.异面D.平行或异面答案A解析由长方体性质知:EF平面ABCD,EF平面EFGH,平面。

【空间和直线的平行】相关PPT文档
【空间和直线的平行】相关DOC文档
2.1.2两条直线平行和垂直的判定 课时对点练(含答案)
2.1.2两条直线平行和垂直的判定 分层训练(含答案)
2.1.2两条直线平行和垂直的判定 课时作业(含答案)
2.1.2两条直线平行和垂直的判定 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开