章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1下列四个命题中,错误的是()A若直线a,b互相平行,则直线a,b确章末复习1空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行棱锥:有一个面
立体几何单元卷Tag内容描述:
1、第1课时 用空间向量解决立体几何中的平行问题,第二章 4 用向量讨论垂直与平行,学习目标,XUEXIMUBIAO,1.了解空间点、线、面的向量表示. 2.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 空间中平行关系的向量表示 设直线l,m的方向向量分别为a,b,平面,的法向量分别为,v,则,ab,a0,kv(kR),知识点二 利用空间向量处理平行问题 利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、。
2、第2课时 用空间向量解决立体几何中的垂直问题,第二章 4 用向量讨论垂直与平行,学习目标,XUEXIMUBIAO,1.能用向量法判断一些简单线线、线面、面面垂直关系. 2.掌握用向量方法证明有关空间线面垂直关系的方法步骤.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 向量法判断线线垂直 设直线l的方向向量为a(a1,a2,a3),直线m的方向向量为b(b1,b2,b3),则lm_. 知识点二 向量法判断线面垂直 设直线l的方向向量a(a1,b1,c1),平面的法向量(a2,b2,c2),则la_. 知识点三 向量法判断面面垂直 若平面的法向。
3、立体几何立体几何 立体几何的知识是高中数学的主干内容之一, 它主要研究简单空间几何体的位置和数量 关系本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体 的结构,三是空间向量与立体几何在本专题中,我们将首先复习空间点、直线、平面之间 的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体 的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证 明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题 7 71 1 点、直线、平面之。
4、立体几何立体几何 立体几何的知识是高中数学的主干内容之一, 它主要研究简单空间几何体的位置和数量 关系本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体 的结构,三是空间向量与立体几何在本专题中,我们将首先复习空间点、直线、平面之间 的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体 的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证 明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题 7 71 1 点、直线、平面之。
5、立体几何初步第1讲 满分晋级立体几何5级空间向量与立体几何立体几何7级立体几何之平行问题立体几何6级立体几何初步新课标剖析当前形势空间几何体在近五年北京卷(理)考查10分高考要求内容要求层次具体要求ABC柱、锥、台、球及其简单组合体认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构三视图,斜二侧法画简单空间图形的直观图能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型;通过观察用两种方法(平行投影与中心投影)画出。
6、立体几何第14讲 14.1空间几何体知识点睛1构成几何体的基本元素:点、线、面点不考虑大小;线不考虑粗细;一条直线把平面分成两个部分面不考虑厚薄;一个平面将空间分成两个部分2多面体:由若干个平面多边形所围成的几何体凸多面体:把一个多面体的任意一个面延展成平面,其余的各面都在这个平面的同一侧 截面:一个几何体和一个平面相交所得的平面图形(包括它的内部)3多面体的表面积和体积公式名称侧面积全面积体 积棱柱棱柱直截面周长直棱柱棱锥棱锥各侧面面积之和正棱锥棱台棱台各侧面面积之和正棱台表中表示面积,分别表示上、下底面。
7、立体几何初步第1讲 满分晋级立体几何5级空间向量与立体几何立体几何7级立体几何之平行问题立体几何6级立体几何初步新课标剖析当前形势立体几何在近五年北京卷(文)考查1924分高考要求内容要求层次具体要求ABC柱、锥、台、球及其简单组合体认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构三视图,斜二测法画简单空间图形的直观图能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型;通过观察用两种方法(平行投影与中心投影)画出。
8、立体几何(2020湖北武昌区高三元月调考)如图,在直三棱柱中,分别为,的中点.(1)证明:平面平面;(2)求二面角的正弦值.证明:平面平面;求二面角的正弦值.试题解析证明:平面平面;【解析】(1)因为,所以.因为平面,平面,所以.因为,所以平面.因为平面,所以.易证,因为,所以平面.因为平面,所以平面平面. 求二面角的正弦值.【解析】方法一:过作,垂足为,过作于,连结,则可证为二面角的平面角.在中,求得;在中,求得.所以. 方法二:因为直三棱柱中,平面,以、分别为轴、轴、轴建立空间直角坐标系,因为,分别为,的中点.所。
9、,四月工作计划,APRIL WORK PLAN,汇报人:XXX,Your content is entered here, or by copying your text, select Paste in this box and choose to retain only text. Your content is typed here, or by copying your text, select Paste in this box.,目录,CONTENTS,工作内容,市场分析,执行策略,销售目标,enter the relevant content you need here. thank you for downloading our ppt template file.,01 PART ONE,enter the relevant content you need here. thank you for downloading our ppt template file.,02 PART TWO,enter the r。
10、 立体几何初步全章复习与巩固编稿:丁会敏 审稿:王静伟 【学习目标】1了解柱,锥,台,球及简单组合体的结构特征.2.能画出简单空间图形的三视图,由三视图能够还原成空间立体图形,并会用斜二测法画出它们的直观图.3.通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.4.理解柱,锥,台,球的表面积及体积公式.5.理解平面的基本性质及确定平面的条件.6.掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质.7.掌握空间直线与平面,平面与平面垂直的判定及性质.【知识网络】【要点梳理】要。
11、 立体几何初步全章复习与巩固编稿:丁会敏 审稿:王静伟 【学习目标】1了解柱,锥,台,球及简单组合体的结构特征。2.能画出简单空间图形的三视图,由三视图能够还原成空间立体图形,并会用斜二测法画出它们的直观图。3.通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。4.理解柱,锥,台,球的表面积及体积公式。5.理解平面的基本性质及确定平面的条件。6.掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。7.掌握空间直线与平面,平面与平面垂直的判定及性质。【知识网络】【要点梳。
12、高考专题突破四高考中的立体几何问题题型一平行、垂直关系的证明例1 如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE.证明(1)三棱柱ABCA1B1C1是直三棱柱,CC1平面ABC.AD平面ABC,ADCC1.又ADDE,DECC1E,DE,CC1平面BCC1B1,AD平面BCC1B1.AD平面ADE,平面ADE平面BCC1B1.(2)A1B1C1中,A1B1A1C1,F为B1C1的中点,A1FB1C1.CC1平面A1B1C1,A1F平面A1B1C1,A1FCC1.又B1C1CC1C1,B1C1,CC1平面BCC1B1,A1F平面BCC1B1.又AD平面BCC1B1,A1F。
13、章末检测一、选择题1.观察图中四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱答案C解析结合柱、锥、台、球的定义可知(3)是棱锥,(4)是棱柱,故选C.2.如图,OAB是水平放置的OAB的直观图,则OAB的面积为()A.6B.3C.6D.12答案D解析由斜二测画法规则可知,OAB为直角三角形,且两直角边长分别为4和6,故面积为12.3.设m,n是两条不同的直线,是两个不同的平面()A.若m,n,则mnB.若m,m,则C.若mn,m,则nD.若m,则m答案C解析A项,当m,n时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m,m时,可能平。
14、章末复习课基础过关1.设a,b,c是空间的三条直线,给出以下三个命题:若ab,bc,则ac;若a和b共面,b和c共面,则a和c也共面;若ab,bc,则ac.其中正确命题的个数是()A.0 B.1 C.2 D.3解析借助正方体中的线线关系易知错;由公理4知正确.答案B2.某几何体的三视图如图所示,则该几何体的体积为()A. B.C.2 D.2解析由三视图知该几何体是一个三棱锥与半个圆柱的组合体.VV三棱锥V圆柱211122.选A.答案A3.如图,已知正六棱柱的最大对角面的面积为4 m2,互相平行的两个侧面的距离为2 m,则这个六棱柱的体积为()A.3 m3B.6 m3C.12 m3D.以上都不对解析设。
15、章末复习1.空间几何体的结构特征及其侧面积和体积名称定义图形侧面积体积多面体棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行S直棱柱侧ch,c为底面的周长,h为高VSh棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形S正棱锥侧ch,c为底面的周长,h为斜高VSh,h为高棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分S正棱台侧(cc)h,c,c为底面的周长,h为斜高V(S上S下)h,h为高旋转体圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体S侧2rh,r为底面半。
16、 章末检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1观察图中四个几何体,其中判断正确的是()A(1)是棱台 B(2)是圆台C(3)是棱锥 D(4)不是棱柱答案C解析结合柱、锥、台、球的定义可知(3)是棱锥,(4)是棱柱,故选C.2.如图,OAB是水平放置的OAB的直观图,则OAB的面积为()A6 B3C6 D12答案D解析由斜二测画法规则可知,OAB为直角三角形,且两直角边长分别为4和6,故面积为12.3设m,n是两条不同的直线,是两个不同的平面()A若m,n,则mn B若m,m,则C若mn,m,则n D若m,则m答案C解析可以借助正方体模型。
17、章末复习课网络构建核心归纳一、空间几何体的结构特征1棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形棱台是棱锥被平行于底面的平面所截而成的这三种几何体都是多面体2圆柱、圆锥、圆台、球是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面3由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体二、空间几。
18、章末检测(一)一、选择题(本大题共12个小题,每小题5分,共60分)1.设m,n是两条不同的直线,、是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,则.其中正确命题的序号是()A. B.和 C.和 D.和解析正确;若,m,则m或m,错;若m,n,则mn,而同平行于同一个平面的两条直线有三种位置关系,错;垂直于同一个平面的两个平面也可以相交,错.答案A2.在如右图所示的三棱锥ABCD中,VABPQ2,VCAPQ6,VCDPQ12,则VABCD等于()A.20 B.24C.28 D.56解析由,得,所以VPBDQVPCDQ4,所以VABCD2612424.答案B3.如图,l,A、B。
19、章末复习1空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形棱台是棱锥被平行于底面的平面所截而成的这三种几何体都是多面体(2)圆柱、圆锥、圆台、球是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面(3)由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体2空间几何体的三视图与直观。
20、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1下列四个命题中,错误的是()A若直线a,b互相平行,则直线a,b确定一个平面B平行于同一条直线的两条直线互相平行C若两条直线没有公共点,则这两条直线是异面直线D两条异面直线不可能垂直于同一个平面答案C解析C项,两直线无公共点,这两直线平行或异面2如图是一个几何体的三视图,其中主视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A. B. C. D.答案B解析由三视图可知,给定的几何体是一个圆锥的一半,故所求的体积。