欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

立体几何复习

,第二部分 讲练篇,解密高考 立体几何问题重在“建”“转”建模、转换,Thank you for watching !,高考专题突破四高考中的立体几何问题 题型一平行、垂直关系的证明 例1(2018南京、盐城、连云港模拟)如图,已知矩形ABCD所在平面与ABE所在平面互相垂直,AEAB,M,N,H分

立体几何复习Tag内容描述:

1、高考专题突破四高考中的立体几何问题题型一平行、垂直关系的证明例1(2018南京、盐城、连云港模拟)如图,已知矩形ABCD所在平面与ABE所在平面互相垂直,AEAB,M,N,H分别为DE,AB,BE的中点(1)求证:MN平面BEC;(2)求证:AHCE.证明(1)方法一取CE的中点F,连结FB,MF.因为M为DE的中点,F为CE的中点,所以MFCD且MFCD.又因为在矩形ABCD中,N为AB的中点,所以BNCD且BNCD,所以MFBN且MFBN,所以四边形BNMF为平行四边形,所以MNBF.又MN平面BEC,BF平面BEC,所以MN平面BEC.方法二取AE的中点G,连结MG,GN.因为G为AE的中点,M为DE的中点,所以MGAD.。

2、第八章 立体几何初步 章末复习 一单项选择题: 1下列说法正确的是 A有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥 B有两个面平行且相似,其余各面都是梯形的多面体是棱台 C如果一个棱锥的各个侧面都是等边三角形,那么这个棱。

3、章末复习1.空间几何体的结构特征及其侧面积和体积名称定义图形侧面积体积多面体棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行S直棱柱侧ch,c为底面的周长,h为高VSh棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形S正棱锥侧ch,c为底面的周长,h为斜高VSh,h为高棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分S正棱台侧(cc)h,c,c为底面的周长,h为斜高V(S上S下)h,h为高旋转体圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体S侧2rh,r为底面半。

4、(三三)立体几何立体几何 1.已知 a,b 为异面直线,下列结论不正确的是( ) A.必存在平面 ,使得 a,b B.必存在平面 ,使得 a,b 与 所成角相等 C.必存在平面 ,使得 a,b D.必存在平面 ,使得 a,b 与 的距离相等 答案 C 解析 由 a,b 为异面直线知,在 A 中,在空间中任取一点 O(不在 a,b 上),过点 O 分别作 a,b 的平行线,则由过点 O 的 a,b 的平行线确定一个平面 ,使得 a,b,故 A 正确; 在 B 中,平移 b 至 b与 a 相交,因而确定一个平面 ,在 上作 a,b夹角的平分线,明 显可以作出两条.过角平分线且与平面 垂直的平面 使得 a,。

5、章末复习,第二章 空间向量与立体几何,学习目标,XUEXIMUBIAO,1.梳理本章知识,构建知识网络. 2.巩固空间向量的有关知识. 3.会用向量法解决立体几何问题.,NEIRONGSUOYIN,内容索引,知识梳理,题型探究,达标检测,1,知识梳理,PART ONE,1.空间中点、线、面位置关系的向量表示 设直线l,m的方向向量分别为a,b,平面,的法向量分别为,v,则,a,kv,kR,ab,ab0,v0,a0,2.用向量法解决立体几何问题 步骤如下: (1)建立适当的空间直角坐标系; (2)写出相关点的坐标及向量的坐标; (3)进行相关坐标的运算; (4)写出几何意义下的结论. 关键点如下: (1)选。

6、微专题三立体几何中的实际应用问题例1(2018南通、泰州模拟)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知正六棱柱的底面边长、高都为4cm,圆柱的底面积为9cm2.若将该螺帽熔化后铸成一个高为6cm的正三棱柱零件,则该正三棱柱的底面边长为_cm.(不计损耗)答案2解析由题意知,铜质六角螺帽毛坯的体积V460(cm3)设正三棱柱的底面边长为acm,则a2sin60660,解得a2,所以正三棱柱的底面边长为2cm.例2如图,一个倒圆锥形容器,它的轴截面是正三角形,在容器内放一个半径为r的铁球,并向容器内注水,使水面恰好与铁球面相切将。

7、回扣回扣 5 立体几何与空间向量立体几何与空间向量 1.三视图 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察 几何体画出的轮廓线.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左) 一样高. (2)三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在 正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样. 2.柱、锥、台、球体的表面积和体积 侧面展开图 表面积 体积 直棱柱 长方形 S2S底S侧 VS底 h 圆柱 长方形 S2r22rl Vr2 l 棱锥 由若干个。

8、第八章第八章 立体几何初步立体几何初步 章末复习章末复习 一选择题 1在棱长为 1 的正方体上,分别用过共顶点的三条棱的中点的平面截该正方体,则截去 8 个三棱锥后,剩下的几何体的体积是 A2 3 B7 6 C4 5 D5 6 2. 已知水。

9、第八章 章末复习 知识系统整合 1对于简单的空间几何体,要注意从表示法分类结构特征三个方面入手,抓住各几何体之间的相互关系,多观察模仿课本中的立体图形,画好空间几何体的直观图 2在本章学习中要注意掌握还台为锥的解题思想和化曲折为直将几何体表。

10、 立体几何初步全章复习与巩固编稿:丁会敏 审稿:王静伟 【学习目标】1了解柱,锥,台,球及简单组合体的结构特征.2.能画出简单空间图形的三视图,由三视图能够还原成空间立体图形,并会用斜二测法画出它们的直观图.3.通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.4.理解柱,锥,台,球的表面积及体积公式.5.理解平面的基本性质及确定平面的条件.6.掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质.7.掌握空间直线与平面,平面与平面垂直的判定及性质.【知识网络】【要点梳理】要。

11、 立体几何初步全章复习与巩固编稿:丁会敏 审稿:王静伟 【学习目标】1了解柱,锥,台,球及简单组合体的结构特征。2.能画出简单空间图形的三视图,由三视图能够还原成空间立体图形,并会用斜二测法画出它们的直观图。3.通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。4.理解柱,锥,台,球的表面积及体积公式。5.理解平面的基本性质及确定平面的条件。6.掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。7.掌握空间直线与平面,平面与平面垂直的判定及性质。【知识网络】【要点梳。

12、章末复习1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系3.平行的判定与性质(1)线面平行的判定与性质判定性质定义定理图形条件aa,b,abaa,a,b结论abaab(2)面面平行的判定与性质判定性质定义定理图形条件a,b,abP,a,b,a,b,a结论aba(3)空间中的平行关系。

13、章末复习课网络构建核心归纳一、空间几何体的结构特征1棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形棱台是棱锥被平行于底面的平面所截而成的这三种几何体都是多面体2圆柱、圆锥、圆台、球是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面3由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体二、空间几。

14、高考专题突破四高考中的立体几何问题题型一平行、垂直关系的证明例1 如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE.证明(1)三棱柱ABCA1B1C1是直三棱柱,CC1平面ABC.AD平面ABC,ADCC1.又ADDE,DECC1E,DE,CC1平面BCC1B1,AD平面BCC1B1.AD平面ADE,平面ADE平面BCC1B1.(2)A1B1C1中,A1B1A1C1,F为B1C1的中点,A1FB1C1.CC1平面A1B1C1,A1F平面A1B1C1,A1FCC1.又B1C1CC1C1,B1C1,CC1平面BCC1B1,A1F平面BCC1B1.又AD平面BCC1B1,A1F。

15、立体几何立体几何 立体几何的知识是高中数学的主干内容之一, 它主要研究简单空间几何体的位置和数量 关系本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体 的结构,三是空间向量与立体几何在本专题中,我们将首先复习空间点、直线、平面之间 的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体 的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证 明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题 7 71 1 点、直线、平面之。

16、立体几何立体几何 立体几何的知识是高中数学的主干内容之一, 它主要研究简单空间几何体的位置和数量 关系本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体 的结构,三是空间向量与立体几何在本专题中,我们将首先复习空间点、直线、平面之间 的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体 的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证 明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题 7 71 1 点、直线、平面之。

17、专题五专题五 立体几何与空间向量立体几何与空间向量 第二编 讲专题 第第3 3讲讲 立体几何中的向量方法立体几何中的向量方法 考情研析 以空间几何体为载体考查空间角是高考命题的重点,常 与空间线面关系的证明相结合,热点为线面角、二面角的求解,均以解答题 的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 。

【立体几何复习】相关PPT文档
第二章 空间向量与立体几何 章末复习ppt课件
第八章立体几何初步 章末复习ppt课件
【立体几何复习】相关DOC文档
第八章 立体几何初步 章末复习试卷(含答案)
第一章 立体几何初步 章末复习学案(含答案)
高三数学二轮复习分项练3 立体几何
高三数学二轮复习立体几何与空间向量
第八章 立体几何初步 单元复习试卷(含答案)
高考总复习:知识讲解_《立体几何初步》全章复习与巩固 -基础
高考总复习:知识讲解_《立体几何初步》全章复习与巩固-提高
第1章 立体几何初步 章末复习 学案(含答案)
第6章立体几何初步章末复习 学案(含答案)
2020高考数学(文)专项复习《立体几何》含答案解析
2020高考数学(理)专项复习《立体几何》含答案解析
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开