比例尺情境导入课堂小结课后作业比例尺课堂练习四探究新知研究战术,需要画一个足球场平面图。怎样画足球场平面图?情境导入9.5厘米3厘米怎样画足球场平面图呢?这个平面图与足球场像不像?探究新知怎样画足球场平面图呢?这个平面图与足球场像不像?怎样画足球场平面图呢?这个平面图与足球场像不像?图上距离实际距离
六年级上册计算Tag内容描述:
1、,折扣的意义与解决 折扣问题的方法,情境导入,课堂小结,课后作业,百分数(二),课堂练习,一,探究新知,旅游团有23人。,零售每张票60元,团体票八五折优惠。,情境导入,旅游团有23人。,零售每张票60元,团体票八五折优惠。,旅游团买门票需要多少钱?,旅游团买门票需要多少钱?,票价:60元 团体票(10人以 上):八五折优惠,是什么意思?,85%,几折就是十分之几, 也就是百分之几十。。
2、,求一个数比另一个数多百分之几,情境导入,课堂小结,课后作业,百分数(二),课堂练习,一,探究新知,去年自驾游人数480人,今年自驾游人数540人,去年团体游人数500人,今年团体游人数520人,情境导入,今年自驾游人数比去年多百分之几?,今年团体游人数比去年多百分之几?,去年团体游人数比今年少百分之几?,去年自驾游人数比今年少百分之几?,“今年自驾游人数比去年多百分之几 ”是什。
3、,求一个数比另一个数少百分之几,情境导入,课堂小结,课后作业,百分数(二),课堂练习,一,探究新知,去年自驾游人数480人,今年自驾游人数540人,去年团体游人数500人,今年团体游人数520人,情境导入,去年团体游人数比今年少百分之几?,去年自驾游人数比今年少百分之几?,去年自驾游人数比今年自驾游人数少百分之几?,去年,540人,480人,“去年自驾游人数比今。
4、,求一个数的百分之几是多少,情境导入,课堂小结,课后作业,百分数(二),课堂练习,一,探究新知,采摘节期间,凤凰岭村共接待游客980人,其中到苹果园采摘的占75%。,共接待游客980人,到苹果园采摘的占75%,情境导入,采摘节期间,凤凰岭村共接待游客980人,其中到苹果园采摘的占75%。,共接待游客980人,到苹果园采摘的占75%,到苹果园采摘的游客有多少人?,980人,?。
5、,求比一个数多百分之几的数是多少,情境导入,课堂小结,课后作业,百分数(二),课堂练习,一,探究新知,梨园去年收入4万元,今年收入比去年增长5%。,今年的收入是多少万元?,梨园去年收入4万元,今年收入比去年增长5%。,情境导入,梨园去年收入4万元,今年收入比去年增长5%。,梨园今年的收入是多少万元?,去年:,今年:,4万元,?万元,比去年增长5%,比去年多几万元。
6、,综 合 练 习,复习旧知,课堂小结,课后作业,圆柱和圆锥,巩固练习,二,这一单元学习了哪些知识?,这一单元学习了圆柱和圆锥的相关知识。,复习旧知,填一填。,V锥 1 3 Sh,两个同样大小的 底面,一个侧面, 有无数条高。,一个底面,一个 侧面,一个顶点, 只有一条高。,S表=S底2+S侧,S侧=Ch,V柱Sh,3dm,8cm,10dm,6m,50.24cm2,4m,28.26dm2,12。
7、,圆柱体积公式的推导和应用,情境导入,课堂小结,课后作业,圆柱和圆锥,课堂练习,二,探究新知,圆柱形包装盒的底面直径是12cm,高是20cm。,情境导入,圆柱形包装盒的底面直径是12cm,高是20cm。,圆柱形包装盒的体积是多少立方厘米?,r,S = r r = r2,S = r2,r,求包装盒的体积就是求圆柱的体积。,圆的面积公式是把圆转化成近似的长方形推导而来。,圆柱形包装盒的。
8、,本金、利息、利率的意义 及相关计算,情境导入,课堂小结,课后作业,百分数(二),课堂练习,一,探究新知,情境导入,探究新知,男生志愿者 王东 李明 刘刚 李亮 丁一 张帅 于军 刘平 赵海,存入银行的钱叫本金。,取款时银行除还给本金外,另外付给的钱叫利息。,单位时间内,利息与本金的比值叫利率。,利率是银行规定的,按年计算的叫年利率,按月计算的叫月利率。,存款时间的长短和方式。
9、,纳税的意义和应纳税额的计算,情境导入,课堂小结,课后作业,百分数(二),课堂练习,一,探究新知,“十一”黄金周期间共收入115万元。,情境导入,“十一”黄金周期间共收入115万元。,如果按3%的税率缴纳营业税,“十一”黄金周期间彩虹谷景区应缴纳营业税多少万元?,如果按3%的税率缴纳营业税,“十一”黄金周期间彩虹谷景区应缴纳营业税多少万元?,纳税是根据国家税法规定,按照一定的比率把集体或个。
10、,圆柱表面积的计算方法,情境导入,课堂小结,课后作业,圆柱和圆锥,课堂练习,二,探究新知,底面直径2dm,高3dm。,做一个这样的圆柱形纸筒,至少需要多少纸板?,情境导入,求需要多少纸板,也就是求圆柱形纸筒的表面积。,做一个这样的圆柱形纸筒,至少需要多少纸板?,探究新知,圆柱侧面积计算公式的推导,长方形的面积 = 长 宽,圆柱的侧面积,底面周长,高,圆柱表面积的计算公式,你。
11、,求图上距离,情境导入,课堂小结,课后作业,比例尺,课堂练习,四,探究新知,边线,边线,底线,底线,中线,禁区,禁区,情境导入,雏鹰少年足球队上半场以20领先。10号队员在蓝色区域A处(距底线15米、右边线25米处)起脚,射进第一个球;4号队员在B处(距底线16米、左边线20米)起脚,射进第二个球。,足球场平面图,10号队员在蓝色区域距底线15米、右边线25米处起脚,射进。
12、,反 比 例,情境导入,课堂小结,课后作业,比例,课堂练习,三,探究新知,每天生产的吨数和需要生产的天数这两种量有什么关系呢?,啤酒厂要生产一批啤酒,每天生产的吨数与需要的天数如下表。,情境导入,啤酒厂要生产一批啤酒,每天生产的吨数与需要的天数如下表。,从左往右看表中数据,发现每天生产的吨数越多,需要的天 数就越少;从右往左看表中数据,发现每天生产的吨数越少,需要 的天数就越多,它们是相关。
13、,让校园绿起来,情境导入,课堂小结,课后作业,比例尺,课堂练习,四,探究新知,情境导入, 25平方米的草地每天大约能吸收一个人一天呼出的二氧化碳,制造出一个人一天需要的氧气。 1公顷树林每天大约能吸收1000千克二氧化碳,释放700千克氧气。这些氧气足够800个人呼吸之用。 山东省中小学校园园林绿化管理办法中规定:新建学校绿地率不得低于35%,绿化覆盖率应在50%以上。 山东省小学规范化学。
14、,比例的基本性质,情境导入,课堂小结,课后作业,比例,课堂练习,三,探究新知,一辆货车两天运输大麦芽情况如下表。,第一天运了2次,共运16吨,第二天运了4次,共运32吨,情境导入,一辆货车两天运输大麦芽情况如下表。,第一天运了2次,共运16吨,第二天运了4次,共运32吨,你能写出哪些比例?,162=324,1632=24,216=432,3216=42,你能写出哪些比例?,在比例里,两个外。
15、,正 比 例,情境导入,课堂小结,课后作业,比例,课堂练习,三,探究新知,情境导入,工作总量和工作时间有什么关系呢?,工作总量和工作时间有什么关系呢?,啤酒生产情况记录表,工作总量和工作时间是两种相关联的量,,工作时间变化,,工作总量也随着变化。,探究新知,工作总量和工作时间的变化情况可以用下图表示,根据工作总量和工作时间的关系绘出的图像是一条直线。,工作总量和工作时间有什么关系呢?,啤。
16、,解 比 例,情境导入,课堂小结,课后作业,比例,课堂练习,三,探究新知,2025 = 4x = ,情境导入,2025 = 4 x = ,根据比例的基本性质,如果已知 比例中的任意三项,都可以求出这个 比例中的未知项。,求比例中的未知项,叫作解比例。,探究新知,2025 = 4x = ,解比例时,直接把原比例改写成:“两个外项的积=两个内项的积”,2025 = 4x,解: 20 x = 2。
17、,圆锥的认识,情境导入,课堂小结,课后作业,圆柱和圆锥,课堂练习,二,探究新知,情境导入,这些物体是圆锥形的。,探究新知,底面,O,圆锥的底面是一个圆面,,圆锥的侧面是一个曲面。,从圆锥的顶点到底面圆心的距离 是圆锥的高,圆锥只有一条高。,圆锥有哪些特征呢?,外形是圆锥的物体,外形是圆锥的物体,外形是圆锥的物体,外形是圆锥的物体,外形是圆锥的物体,外形是圆锥的物体,用一个直角三角形的卡片。
18、,圆柱的认识,情境导入,课堂小结,课后作业,圆柱和圆锥,课堂练习,二,探究新知,情境导入,3个物体的形状都是圆柱形的,简称圆柱。,探究新知,底面,底面,圆柱的两个圆面叫作底面,,圆柱的上、下两个面都是圆,且大小一样。,圆柱有一个曲面。,曲面叫作侧面。,两底面之间的距离叫作高,圆柱有无数条高。,圆柱有哪些特征呢?,侧面,生活中外形是圆柱形的物体有哪些?,生活中外形是圆柱形的物体有。
19、,立体的截面,情境导入,课外活动,圆柱和圆锥,拓展延伸,二,活动探究,情境导入,水果刀、水果、火腿肠、透明的容器(长方体、圆柱体等形状)、水、正方体面包、圆锥形胡萝卜。,活动探究,1.横着切、竖着切和斜着切火腿肠,火腿肠的截面。 如下图所示:,截面形状:,1.横着切、竖着切和斜着切火腿肠,火腿肠的截面。 如下图所示:,截面形状:,1.横着切、竖着切和斜着切火腿肠,火腿肠的截面。 如下。
20、,比 例 尺,情境导入,课堂小结,课后作业,比例尺,课堂练习,四,探究新知,研究战术,需要画一个足球场平面图。,怎样画足球场平面图?,情境导入,9.5厘米,3厘米,怎样画足球场平面图呢?,这个平面图与足球场像不像?,探究新知,怎样画足球场平面图呢?,这个平面图与足球场像不像?,怎样画足球场平面图呢?,这个平面图与足球场像不像?,图上 距离,实际 距离,这个平面图的长、宽与足。