2.3函数的奇偶性与周期性 最新考纲1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性 1函数的奇偶性 奇偶性 定义 图象特点 偶函数 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f
鲁京津琼专用2020版高考数学大一轮复习第二章函数概念Tag内容描述:
1、2.3函数的奇偶性与周期性最新考纲1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性1函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x。
2、微专题一 多元变量的最值问题,第二章 函数概念与基本初等函数,经验分享 在数学中经常碰到求含有多个变量的最值问题,此类题目题型众多,解法也很多,学生在面对含有多个变量的问题时,最大的困扰是不知从何处入手.对于高中生,主要掌握的是一元变量的最值问题.因此,解决多元变量的最值问题,减元是常见的办法.,一、代入减元 例1 设x,yR,且2x8yxy0,求xy的最小值.,所以,当x12,y6时,xy取得最小值18.,点评 此题是一道学生经常见到的求多变量最值的试题,虽然此解法不是最优的解法,但可能是学生比较容易想到的解法.它的优点是由前面的。
3、2.6对数与对数函数最新考纲1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对数在简化运算中的作用.2.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道指数函数yax(a0,且a1)与对数函数ylogax(a0,且a1)互为反函数1对数的概念一般地,如果axN(a0,且a1),那么数x叫做以a为底N的对数,记作xlogaN,其中a。
4、2.3 函数的奇偶性与周期性,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.结合具体函数,了解函数奇偶性的含义. 2.学会运用函数图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.函数的奇偶性,f(x)f(x),y轴,f(x)f(x),原点,知识梳理,ZHISHISHULI,2.周期性 (1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有 ,那么就称函数yf(x)为。
5、2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质1函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调性,区间D叫做yf(x)的单调区间2函。
6、2.5指数与指数函数最新考纲1.通过具体实例,了解指数函数模型的实际背景.2.理解有理数指数幂的含义,通过具体实例,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念和意义,借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.4.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型1分数指数幂(1)我们规定正数的正分数指数幂的意义是(a0,m,nN*,且n1)于是,在条件a0,m,nN*,且n1下,根式都可以写成分数指数幂的形式正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定(a0。
7、2.4幂函数与二次函数最新考纲1.通过实例,了解幂函数的概念.2.结合函数yx,yx2,yx3,y,y的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题1幂函数(1)幂函数的定义一般地,形如yx的函数称为幂函数,其中x是自变量,是常数(2)常见的五种幂函数的图象和性质比较函数yxyx2yx3yyx1图象性质定义域RRRx|x0x|x0值域Ry|y0Ry|y0y|y0奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(,0上单调递减;在(0,)上单调递增在R上单调递增在0,)上单调递增在(,0。
8、2.5 指数与指数函数,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.通过具体实例,了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,通过具体实例,了解实数指数幂的意义,掌握幂的运算. 3.理解指数函数的概念和意义,借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点. 4.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.分数指数幂 (1)我们规定正数的正分数指数幂。
9、2.6 对数与对数函数,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对数在简化运算中的作用. 2.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点. 3.知道指数函数yax(a0,且a1)与对数函数ylogax(a0,且a1)互为反函数.,NEIRONGSUOYIN,内容索引,基础知识。
10、2.9函数模型及其应用最新考纲1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用1几类函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)反比例函数模型f(x)b(k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)对数函数模型f(x)blogaxc(a,b,c为常数,b0,a0且a1)幂。
11、2.2 函数的单调性与最值,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义. 2.学会运用函数图象理解和研究函数的性质,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.函数的单调性 (1)单调函数的定义,f(x1)f(x2),f(x1)f(x2),知识梳理,ZHISHISHULI,(2)单调区间的定义 如果函数yf(x)在区间D上是 或 ,那么就说函数yf(x)在这一区间具有(严格的)单调性, 叫做yf(x)的单调区间.,上升的,下降的,增函。
12、阶段强化练(一),第二章 函数概念与基本初等函数,一、选择题 1.(2019四川诊断)下列函数中,既是偶函数又在(0,)上单调递增的函数是,解析 根据题意,依次分析选项:,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,对于C,yx2,为偶函数,在(0,)上单调递减,不符合题意; 对于D,yx2,为偶函数,在(0,)上单调递增,符合题意; 故选D.,2.已知函数f(x)3x 则f(x) A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数 C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解析 函数。
13、阶段自测卷(一),第二章 函数概念与基本初等函数,一、选择题(本大题共12小题,每小题5分,共60分) 1.(2019太原期中)函数yln x 的定义域是 A.(0,1) B.0,1) C.(0,1 D.0,1,所以函数f(x)的定义域为(0,1.故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,2.(2019凉山诊断)下列函数中,既是奇函数,又在区间(0,1)上递减的函数是 A.ycos x B.y C.ytan x D.yx3,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 由于ycos x是偶函数,故A不是正确选项.,由于ytan x在(0,1)上为增函数,故C不是正确选项. D选项中yx3既。
14、阶段强化练(二),第二章 函数概念与基本初等函数,一、选择题 1.下列函数中,既是偶函数又存在零点的是 A.ycos x B.ysin x C.yln x D.yx21,解析 ycos x是偶函数且有无数多个零点,ysin x为奇函数,yln x既不是奇函数也不是偶函数,yx21是偶函数但没有零点. 故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,2.方程log3x2x6的解所在区间是 A.(1,2) B.(3,4) C.(2,3) D.(5,6),解析 令f(x)log3x2x6, 则函数f(x)在(0,)上单调递增, 且函数在(0,)上连续, 因为f(2)0,故有f(2)f(3)0, 所以函数f(x)log3x2x6的零点所在的区间为(2,3), 即方。
15、2.7函数的图象最新考纲1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题1描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象2图象变换(1)平移变换(2)对称变换yf(x)yf(x);yf(x)yf(x);yf(x)yf(x);yax (a0且a1)ylogax(a0且a1)(3)伸缩变换yf(x)yf(ax)yf(x)yaf(x)(4)翻折变换yf(x)y|f(x)|.yf(x)yf(|x|)概念方法微。
16、2.1函数及其表示最新考纲1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,了解简单的分段函数,并能简单应用(函数分段不超过三段)1函数2函数的有关概念(1)函数的定义域、值域在函数yf(x),xA中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数。
17、2.9 函数模型及其应用,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.几类函数模型,知识梳理,ZHISHISHULI,2.三种函数模型的性质,递增,递增,y轴,x轴,请用框图概括解函数应。
18、2.7 函数的图象,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.描点法作图 方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.,知识梳理,ZHISHISHULI,2.。
19、2.8 函数与方程,ZUIXINKAOGANG,最新考纲,1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系. 2.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.函数的零点 (1)函数零点的定义 对于函数yf(x)(xD),把使 的实数x叫做函数yf(x)(xD)的零点. (2)三个等价关系 方程f(x)0有实数根函数yf(x)的图象与 有交点函数yf(x)有 . (3)函数零点。
20、2.1 函数及其表示,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用了解构成函数的要素,会求一些简单函数的定义域和值域. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 3.通过具体实例,了解简单的分段函数,并能简单应用(函数分段不超过三段),NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 。