第第3讲讲平面向量平面向量1.(2019佛山模拟)已知向量a(21),b(1,k),a(2ab),则k等于()A.8B.6C.6D.8答案A解析a(21),b(1,k),2ab(32k),a(2ab),则a()2ab62k0,解得k8.2.(2019福建三校第3讲平面向量板块三基础考点练透提速不失分
平面向量Tag内容描述:
1、章末检测试卷章末检测试卷(二二) (时间:120 分钟 满分:150 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1若OA (1,2),OB (1,1),则AB 等于( ) A(2,3) B(0,1) C(1,2) D(2,3) 考点 平面向量坐标运算的应用 题点 利用平面向量的坐标运算求向量的坐标 答案 D 解析 OA (1,2),OB (1,1), 所以AB OB 。
2、章末检测章末检测(二二) (时间:120 分钟 满分:150 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1已知AB (3,0),那么|AB|等于( ) A2 B3 C(1,2) D5 解析 AB (3,0),|AB| 32023.故选 B 答案 B 2若OA (1,2),OB (1,1),则AB ( ) A(2,3) B(0,1) C(1,2) D(2,3) 解析 O。
3、滚动训练二滚动训练二( 2.1 2.5) 一、选择题 1若非零向量 a,b 满足|a|3|b|a2b|,则 a 与 b 的夹角的余弦值是( ) A1 3 B. 1 3 C. 2 3 D 2 3 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 答案 A 解析 由|a|a2b|得 a2a24b24a b,即 a bb2,所以 cos a b |a|b| b2 3|b| |b| 1 3.。
4、章末复习章末复习 一、网络构建 二、要点归纳 1向量的运算:设 a(x1,y1),b(x2,y2) 向量运算 法则(或几何意义) 坐标运算 向量的线 性运算 加法 ab(x1x2,y1y2) 减法 ab(x1x2,y1y2) 数乘 (1)|a|a|; (2)当 0 时,a 的方向与 a 的方向相 同;当 0) (1)用 k 表示数量积 a b; (2)求 a b 的最小值,并求出。
5、第第 3 讲讲 平面向量平面向量 1.(2019 佛山模拟)已知向量 a(2,1),b(1,k),a(2ab),则 k 等于( ) A.8 B.6 C.6 D.8 答案 A 解析 a(2,1),b(1,k),2ab(3,2k), a(2ab),则 a()2ab 62k0, 解得 k8. 2.(2019 福建三校联考)若平面向量 a, b 满足 a (ab)3, 且 a 1 2, 3 2 ,| |b 2 5, 则|ab 等于( ) A.5 B.3 2 C.18 D.25 答案 A 解析 a 1 2, 3 2 ,|a|1, 又 a()ab 3| |a 2a b3a b2, (ab)2| |a 22a b| | b 2142025, |ab 5. 3.(2019 乐山模拟)如图所示,AD 是ABC 的中线,O 是 AD 的中点,若CO AB。
6、,第3讲 平面向量,板块三 基础考点练透提速不失分,1.(2019佛山模拟)已知向量a(2,1),b(1,k),a(2ab),则k等于 A.8 B.6 C.6 D.8,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 a(2,1),b(1,k),2ab(3,2k), a(2ab),则a(2a+b)62k0, 解得k8.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又0a,b,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,5.(2019株洲模拟)在RtABC中,点D为斜边BC的中点,|AB|8,|AC|6,则 等于 A.48 B.40 C.32 D.16,1,2,3,4,5,6,7,8,9,。
7、章末复习1向量的运算:设a(x1,y1),b(x2,y2).向量运算法则(或几何意义)坐标运算向量的线性运算加法ab(x1x2,y1y2)减法ab(x1x2,y1y2)数乘(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0a(x1,y1)向量的数量积运算ab|a|b|cos (为a与b的夹角),规定0a0,数量积的几何意义是a的模与b在a方向上的正射影的数量的积abx1x2y1y22.两个定理(1)平面向量基本定理定理:如果e1,e2是一平面内的两个不平行的向量,那么该平面内的任一向量a,存在唯一的一对实数a1,a2,使aa1e1a2e2.基底:把不共线的向量e1,e2叫。
8、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若(1,2),(1,1),则等于()A(2,3) B(0,1) C(1,2) D(2,3)答案D解析(1,2),(1,1),所以(11,12)(2,3)2设e1,e2为基底向量,已知向量e1ke2,2e1e2,3e13e2,若A,B,D三点共线,则k的值是()A2 B3 C2 D3答案A解析易知e12e2(e12e2),又A,B,D三点共线,则,则k2,故选A.3已知A(2,3),(3,2),则点B和线段AB的中点M坐标分别为()AB(5,5),M(0,0) BB(5,5),MCB(1,1),M(0,0) DB(1,1),M答案B解析(2,3)(3,2)(5,5),AB中点M.4已知有向线段,不。
9、章末检测试卷(二)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1已知向量(3,7),(2,3),则_.答案解析()(3,7)(2,3).2已知向量a(1,1),b(2,x),若ab与ab平行,则实数x_.答案2解析ab(3,1x),ab(1,1x),根据题意有3(1x)(1x),解得x2.3已知点A(1,3),B(4,1),则与向量同方向的单位向量为_答案解析由已知,得(3,4),所以|5,因此与同方向的单位向量是.4已知平面向量a(x1,y1),b(x2,y2),若|a|2,|b|3,ab6,则的值为_答案解析设a,b的夹角为,则ab|a|b|cos 6cos 1,即a,b共线且反向,ab,x1x2,y1y2。
10、章末检测(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知向量a,b满足|a|1,ab1,则a(2ab)()A.4 B.3 C.2 D.0解析a(2ab)2a2ab2(1)3,故选B.答案B2.下列说法中正确的有()共线向量就是向量所在的直线在同一平面内;长度相等的向量叫做相等向量;零向量的长度为零.A.0个 B.1个 C.2个 D.3个解析共线向量就是平行向量,故说法是错的;相等向量是指长度相等且方向相同的向量,故说法是错的;正确的只有.答案B3.已知|a|3,|b|5,如果ab,则ab()A.15 B.1。
11、章末复习一、网络构建二、要点归纳1向量的运算:设a(x1,y1),b(x2,y2).向量运算法则(或几何意义)坐标运算向量的线性运算加法ab(x1x2,y1y2)减法ab(x1x2,y1y2)数乘(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0a(x1,y1)向量的数量积运算ab|a|b|cos (为a与b的夹角)规定0a0,数量积的几何意义是a的模与b在a方向上的投影的积abx1x2y1y22.两个定理(1)平面向量基本定理定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.基底:把不共线。
12、 2020年高考文科数学平面向量题型归纳与训练【题型归纳】题型一 平面向量的基本定理例1给出下列命题:(1)向量与向量是共线向量,不是平行向量;(2)若向量与向量都是单位向量,则;(3)若,则四点构成平行四边形;(4)为实数,若,则与共线其中错误的命题的序号是 【答案】(1)(2)(3)(4)【解析】(1)错误,因为共线向量就是平行向量,平行向量就是共线向量;(2)错误,向量有方向和大小两个要素,只有方向相同且长度相等,两个向量才相等。两个单位向量不一定相等,因为它们的方向不一定相同;(3)是错误的,当A、B、C、D。
13、2020年高考理科数学:平面向量题型归纳与训练【题型归纳】题型一 平面向量的线性运算例1:记maxx,yx,xyy,xy,minx,yy,xyx,xy设a,b为平面向量,则()Amina+b,|ab|mina,|b| Bmina+b,|ab|mina,|b|Cmaxa+b2,ab2a2+b2 Dmaxa+b2,ab2a2+b2 【答案】:D【解析】方法一:对于平面向量a,b,|a+b|与|ab|表示以a,b为邻边的平行四边形的两条对角线的长度,而根据平面几何知识可得,平行四边形两对角线长度的较小者与相邻两边长度的较小者,没有确定的大小关系,故选项A,B均错;又a+b,|ab|中的较大者与a,|b|一定构成非锐角三角形的三条边,由余弦定理知。