欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

平面向量一轮习题

2.2.3用平面向量坐标表示向量共线条件学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法.知识点向量共线条件22.3用平面向量坐标表示向量共线条件基础过关1已知三点A(11),B(02),C(20),若和是相反向量,则D点坐标是(

平面向量一轮习题Tag内容描述:

1、,第五章 平面向量,第五章 平面向量,第五章 平面向量,第五章 平面向量,方向,模,0,1个单位,相反,相同,相反,ba,a(bc),相同,相反,0,平面向量的有关概念(师生共研),平面向量的线性运算(师生共研),平面向量共线定理的应用(典例迁移),。

2、5.2平面向量基本定理及坐标表示考情考向分析主要考查向量的加法、减法、数乘向量的坐标运算及向量共线的坐标表示,考查向量线性运算的综合应用,考查学生的运算推理能力、数形结合能力,常与三角函数综合交汇考查,突出向量的工具性一般以填空题的形式考查,偶尔有与三角函数综合在一起考查的解答题,属于中档题1平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底2平面向量的坐标运算(1)向量加法。

3、考点规范练 28 平面向量的数量积与平面向量的应用一、基础巩固1.对任意平面向量 a,b,下列关系式中不恒成立的是( )A.|ab|a|b|B.|a-b|a|-|b|C.(a+b)2=|a+b|2D.(a+b)(a-b)=a2-b22.已知 a,b 为单位向量,其夹角为 60,则(2 a-b)b= ( )A.-1 B.0 C.1 D.23.已知向量 a,b 满足|a|=2,|b |=1,(a+b)b=0,则向量 a,b 的夹角为( )A.30 B.60 C.150 D.1204.已知向量 p=(2,-3),q=(x,6),且 pq,则|p+ q|的值为( )A. B. C.5 D.135 135.在四边形 ABCD 中,若 =(1,2), =(-4,2),则该四边形的面积为 ( ) A. B.2 C.5 D.105 56.在ABC 中,AB 边上的高为 CD,若 =a, =b,ab=。

4、专题 13 平面向量基本定理及其应用一、本专题要特别小心:1.平面向量基本定理的应用问题2. 基本定理的两条路径法表示向量问题3. 数形结合的应用4.向量于线性规划问题等综合问题 5. 向量的坐标表示及运算性质6.向量共线与垂直的坐标表示7.向量与数列的综合8.向量与解析几何的综合二 【学习目标】1了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示2会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示平面向量共线和垂直的条件三 【方法总结】1.向量的坐标表示主要依据平面向量的基本定理,平面向量 实数对(x。

5、专题 13 平面向量基本定理及其应用一、本专题要特别小心:1.平面向量基本定理的应用问题2. 基本定理的两条路径法表示向量问题3. 数形结合的应用4.向量于线性规划问题等综合问题 5. 向量的坐标表示及运算性质6.向量共线与垂直的坐标表示7.向量与数列的综合8.向量与解析几何的综合二 【学习目标】1了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示2会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示平面向量共线和垂直的条件三 【方法总结】1.向量的坐标表示主要依据平面向量的基本定理,平面向量 实数对(x。

6、6.3 平面向量的数量积最新考纲 考情考向分析1.理解平面向量数量积的概念及其几何意义2.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系3.会用坐标表示平面向量的平行与垂直.主要考查利用数量积的定义解决数量积的运算、投影、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模长以及判断两个平面向量的平行与垂直关系一般以选择题、填空题的形式考查,偶尔会在解答题中出现,属于中档题.1向量的夹角已知两个非零向量 a 和 b,作 a, b,则AOB 就是向量 a 与 b 的夹角,向量夹角OA OB 的范围是0,2平。

7、第 34 讲 平面向量的应用1一船从某河一岸驶向另一岸,船速为 v1,水速为 v2,已知船可垂直到达对岸,则(B)A|v 1|v2|C|v 1| v2| D|v 1|与|v 2|的大小不确定2设 a,b 是非零向量,若函数 f(x)(xab) (axb)的图象是一条直线,则必有(A)Aa b Ba bC|a|b| D|a| |b|f(x)xa 2x 2ababxb 2,因为 f(x)为直线,即 ab0,所以 ab.3已知 O、N、P 在ABC 所在平面内,且| | | |, 0,且OA OB OC NA NB NC ,则点 O、N、P 依次是ABC 的 (C)PA PB PB PC PC PA A重心、外心、垂心 B重心、外心、内心C外心、重心、垂心 D外心、重心、内心由| | | |知,O 为 ABC 。

8、 5.3 平面向量的数量积平面向量的数量积 最新考纲 考情考向分析 1.理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式, 会进行平面向量 数量积的运算. 4.能运用数量积表示两个向量的夹角, 会用数 量积判断两个平面向量的垂直关系. 主要考查利用数量积的定义解决数量积的运 算、投影、求模与夹角等问题,考查利用数 量积的坐标表示求两个向量的夹角、模以及 判断两个平面向量的平行与垂直关系一般 以选择题、填空题的形式考查,偶尔会在解 答题中出现,属于中档题. 1向量的夹角 。

9、第第 3 讲讲 平面向量平面向量 1.(2019 佛山模拟)已知向量 a(2,1),b(1,k),a(2ab),则 k 等于( ) A.8 B.6 C.6 D.8 答案 A 解析 a(2,1),b(1,k),2ab(3,2k), a(2ab),则 a()2ab 62k0, 解得 k8. 2.(2019 福建三校联考)若平面向量 a, b 满足 a (ab)3, 且 a 1 2, 3 2 ,| |b 2 5, 则|ab 等于( ) A.5 B.3 2 C.18 D.25 答案 A 解析 a 1 2, 3 2 ,|a|1, 又 a()ab 3| |a 2a b3a b2, (ab)2| |a 22a b| | b 2142025, |ab 5. 3.(2019 乐山模拟)如图所示,AD 是ABC 的中线,O 是 AD 的中点,若CO AB。

10、回扣回扣 2 复数复数、程序框图与平面向量程序框图与平面向量 1.复数的相关概念及运算法则 (1)复数 zabi(a,bR)的分类 z 是实数b0; z 是虚数b0; z 是纯虚数a0 且 b0. (2)共轭复数 复数 zabi(a,bR)的共轭复数 z abi. (3)复数的模 复数 zabi(a,bR)的模|z| a2b2. (4)复数相等的充要条件 abicdiac 且 bd(a,b,c,dR). 特别地,abi0a0 且 b0(a,bR). (5)复数的运算法则 加减法:(abi) (cdi)(a c)(b d)i; 乘法:(abi)(cdi)(acbd)(adbc)i; 除法:(abi) (cdi)acbd c2d2 bcad c2d2 i(cdi0). ()其中a,b,c,dR 2.复数的几个常见结论 (1)(1 i。

11、 5.4 平面向量的综合应用平面向量的综合应用 最新考纲 考情考向分析 1.会用向量方法解决某些简单的平面几 何问题 2.会用向量方法解决简单的力学问题及 其他一些实际问题. 主要考查平面向量与函数、三角函数、不等式、数 列、解析几何等综合性问题,求参数范围、最值等 问题是考查的热点,一般以选择题、填空题的形式 出现,偶尔会出现在解答题中,属于中档题. 1向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示 线平行、点共线等问题 共线向量定理 ababx1y2x2y10, 其中 a(x1,y1),b(x2,y2),。

12、 1 从平面向量到空间向量从平面向量到空间向量 学习目标 1.理解空间向量的概念.2.了解空间向量的表示法,了解自由向量的概念.3.理解空 间向量的夹角.4.理解直线的方向向量与平面的法向量的概念. 知识点一 空间向量的概念 1.定义:在空间中,把既有大小又有方向的量,叫作空间向量. 2.长度:空间向量的大小叫作向量的长度或模. 3.表示法 (1)几何表示法:空间向量用有向线段表示. (2)字母表示法:用字母表示,若向量 a 的起点是 A,终点是 B,则向量 a 也可以记作AB ,其 模记为|AB |或|a|. 4.自由向量:数学中所讨论的向量与向量的起点无关。

13、1 从平面向量到空间向量,第二章 空间向量与立体几何,学习目标,XUEXIMUBIAO,1.理解空间向量的概念. 2.了解空间向量的表示法,了解自由向量的概念. 3.理解空间向量的夹角. 4.理解直线的方向向量与平面的法向量的概念.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 空间向量的概念 1.定义:在空间中,把既有 又有 的量,叫作空间向量. 2.长度:空间向量的大小叫作向量的 或 . 3.表示法 (1)几何表示法:空间向量用 表示. (2)字母表示法:用字母表示,若向量a的起点是A,终点是B,则向量a也可以记作 其模。

14、 1 从平面向量到空间向量从平面向量到空间向量 一、选择题 1.两个非零向量的模相等是两个向量相等的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 B 解析 ab|a|b|;|a|b| ab. 2.如图,在直三棱柱 ABCA1B1C1中,ACB90 ,以顶点为起点和终点的向量中,平面 BB1C1C 的法向量的个数为( ) A.0 B.2 C.3 D.4 考点 直线的方向向量与平面的法向量 题点 求平面的法向量 答案 D 解析 依题意知, ACB90 , 所以 A1C1平面BB1C1C, AC平面BB1C1C, 所以平面B。

15、22.3用平面向量坐标表示向量共线条件基础过关1已知三点A(1,1),B(0,2),C(2,0),若和是相反向量,则D点坐标是()A(1,0) B(1,0)C(1,1) D(1,1)答案C2已知平面向量a(x,1),b(x,x2),则向量ab()A平行于x轴B平行于第一、三象限的角平分线C平行于y轴D平行于第二、四象限的角平分线答案C解析ab(0,1x2),平行于y轴3若a(2cos,1),b(sin,1),且ab,则tan等于()A2 B. C2 D答案A解析ab,2cos1sin.tan2.故选A.4已知A、B、C三点在一条直线上,且A(3,6),B(5,2),若C点的横坐标为6,则C点的纵坐标为()A13 B9 C9 D13答案C解析设C点坐标为(6,y),则(8,。

16、2.2.3用平面向量坐标表示向量共线条件学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法.知识点向量共线条件向量共线的坐标表示设a,b是非零向量,且a(a1,a2),b(b1,b2).(1)当ab时,有a1b2a2b10.(2)当ab,且b不平行于坐标轴,即b10,b20时,有.即两个向量平行的条件是相应坐标成比例.思考1已知下列几组向量:a(0,3),b(0,6);a(2,3),b(4,6);a(1,4),b(3,12);a,b.(1)上面几组向量中,a,b有什么关系?答案中b2a,中b3a,中ba.(2)以上几组向量中,a,b共线吗?答案。

【平面向量一轮习题】相关PPT文档
【平面向量一轮习题】相关DOC文档
浙江省20届高考数学一轮 第6章 6.3 平面向量的数量积
2020年人教版高考数学理科一轮练习:第34讲平面向量的应用
高考数学一轮复习学案:5.3 平面向量的数量积(含答案)
高三数学二轮复习第3讲 平面向量
高三数学二轮复习复数、程序框图与平面向量
高考数学一轮复习学案:5.4 平面向量的综合应用(含答案)
2.1 从平面向量到空间向量 学案(含答案)
2.1 从平面向量到空间向量 课时对点练(含答案)
《2.2.3 用平面向量坐标表示向量共线条件》同步练习(含答案)
2.2.3 用平面向量坐标表示向量共线条件 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开