人民教育出版社义务教育教科书八年级数学(上册),第十一章 三角形,11.2 与三角形有关的角,11.2.1 三角形的内角,三角形两边的夹角叫做三角形的内角,三角形的内角,红色的大三角形对蓝色的小三角形说:“我比你大,所以我的内角和肯定比你大。” 小三角形不服气地说:“不对不对,我的内角和和你的一样大
青岛版八年级数学上2.6 等腰三角形第3课时课件Tag内容描述:
1、人民教育出版社义务教育教科书八年级数学(上册),第十一章 三角形,11.2 与三角形有关的角,11.2.1 三角形的内角,三角形两边的夹角叫做三角形的内角,三角形的内角,红色的大三角形对蓝色的小三角形说:“我比你大,所以我的内角和肯定比你大。” 小三角形不服气地说:“不对不对,我的内角和和你的一样大!”,三角形兄弟之争,三角形的三个内角和是多少?,把三个角拼在一起试试看?,你有什么办法可以验证呢?,从刚才拼角的过程你能想出证明的办法吗?,180,实践操作,F,2,1,E,C,B,A,三角形的内角和等于1800.,过A作EFBC,,B=2,(两直线平行,内错角相。
2、1.2 怎样判定三角形全等第4课时,知识回顾 1.什么叫全等三角形?,能够完全重合的两个三角形叫全等三角形.,2.全等三角形有什么性质? 全等三角形的对应边相等,对应角相等.,即:三条边对应相等,三个角对应相等的两个三角形全等.,六个条件,可得到什么结论?,与 满足上述六个条件中的一部分是否能保证 与 全等呢?,一个条件可以吗?,两个条件可以吗?,问题,一个条件可以吗?,有一条边相等的两。
3、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第3课时 等腰三角形的判定与反证法,北师大版八年级下册数学教学课件,1.掌握等腰三角形的判定定理及其运用;(重点、难点) 2.理解并掌握反证法的思想,能够运用反证法进行证明;(重点),学习目标,复习引入,导入新课,问题1:等腰三角形有哪些性质定理及推论?,等腰三角形的两底角相等(简写成 等边对等角”),等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合(简写成 三线合一”),问题2:等腰三角形的“等边对等角”的题设和结论分别是什么?,题设:一。
4、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第1课时 三角形的全等和等腰三角形的性质,北师大版八年级下册数学教学课件,学习目标,1.回顾全等三角形的判定和性质; 2.理解并掌握等腰三角形的性质及其推论,能运用 其解决基本的几何问题.(重点),导入新课,情境引入,问题1:图中有些你熟悉的图形吗?它们有什么共同特点?,斜拉桥梁,埃及金字塔,体育观看台架,问题2:建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道其中反映了什。
5、第1课时,13.3 等腰三角形 13.3.1 等腰三角形,1、了解等腰三角形的概念,掌握 等腰三角形的性质; 2、运用等腰三角形的概念 及性质 解决相关问题.,1、下列图形不一定是轴对称图形的是( ) A.圆 B.长方形 C.线段 D.三角形 2、怎样的三角形是轴对称图形? 3、有两边相等的三角形叫 ,相等的 两边叫 ,另一边叫 ,两腰的夹角叫 , 腰和底边的夹角叫 .,D,等腰三角形,等腰三角形,腰,底,顶角,底角,有两条边相等的三角形 叫做等腰三角形.,等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.,底边,。
6、第2课时,13.3.1 等腰三角形,1、探索等腰三角形的判定定理及其应用 2、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念,BDCD,ADBC,如图,在ABC中,AB=AC, (1)若AD平分BAC,那么 (2)若BDCD,那么 (3)若ADBC,那么,AD平分BAC,ADBC,AD平分BAC,BDCD,如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得A=B.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?,O,B,A,能同时赶到,一个三角形有两个角相等,为什么这两个角所对的边也相等呢?,已知:ABC中,B=C,求证。
7、2.6 等腰三角形第3课时,回顾 我们曾经见过什么特殊三角形?,一般三角形,一般三角形,两条边相等,等腰三角形,等腰三角形,底腰 底腰,等边三角形,等边三角形,特殊的等腰三角形:三条边都相等的三角形叫做等边三角形.,猜想一: 等边三角形的三个内角都相等,并且每一个角都等于60.,已知:ABACBC. 求证:ABC60.,证明:ABAC,BC. 同理 AB, ABC. 又AB。