欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

人教A版高中数学必修二3.3.3 点到直线的距离课件1

2.3.2 平面与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,复习与回顾,观察1:为了解决实际问题,人们需要研究两个平面所成的角。 请同学们观察下面的水坝,水坝在修建的时候,为了坚固耐用,水坝的坡面与水平面要成一个适当的角度,这个角就是两个面所成的角。

人教A版高中数学必修二3.3.3 点到直线的距离课件1Tag内容描述:

1、2.3.2 平面与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,复习与回顾,观察1:为了解决实际问题,人们需要研究两个平面所成的角。 请同学们观察下面的水坝,水坝在修建的时候,为了坚固耐用,水坝的坡面与水平面要成一个适当的角度,这个角就是两个面所成的角。,观察2:当我们把教室的门打开到一定位置,门所在的面与墙所在的面也形成一个角。,我们把类似这样的角成为二面角.,定义:从一条直线出发的两个半平面所组成的图形叫做二面角,记为:二面角-l-,简记:P-l-Q,几个重要概念:,二面角的平面。

2、3.1.2 两条直线平行与垂直的判定,3.1 直线的倾斜角与斜率,第三章 直线与方程,相关知识: 两条直线的位置关系直线的斜率与倾斜角的关系三角形内角和定理及外角定理,平行 (重合) 相交,内角和定理:三角形的三个内角之和为 外角定理:三角形的一个外角等于不相邻的两个内角之和,思考以下问题: 两条直线平行的充要条件及其证明 两条直线平行,斜率一定相等吗?为什么? 两条直线垂直的充要条件及其证明 两条直线垂直,它们的斜率之积一定等于-1吗?为什么?,两条直线平行,前提条件:,两条直线的斜率都存在,分别为,不重合,下列说法正确的有( ) 若两直线斜。

3、3.2.2 直线的两点式方程,3.2 直线的方程,第三章 直线与方程,一、复习,1、什么是直线的点斜式方程?,2、求分别过以下两点直线的方程 A(8, -1) B (-2 , 4) (2) C (x1, y1) D (x2 ,y2) (x1x2, y1y2),3.2 直线的方程(2),若直线L经过点P1(x1,y1)、P2(x2,y2),并且x1x2,则它的斜率,代入点斜式,得,当y1y2时,二、新课 1、直线方程的两点式,3.2 直线的方程(2),注:两点式适用于与两坐标轴不垂直的直线。,3.2 直线的方程(2),若直线L与x轴交点为 (a, 0),与y轴交点为 (0, b), 其中a0,b0,由两点式 ,得,即,2、直线方程的截距式,a 叫做直线在。

4、3.3.1 两条直线的交点坐标,3.3 直线的交点坐标与距离公式,第三章 直线与方程,复习提出,当 = = 时,两条直线重合。,A1 B1 C1 A2 B2 C2,两条直线A1x+B1y+C1=0和A2x+B2y+C2=0的位置关系与系数的关系?,知识探究(一):两条直线的交点坐标,思考1:若点P在直线l上,则点P的坐标(x0,y0)与直线l的方程Ax+By+C=0有什么关系?,Ax0+By0+C=0 思考2:直线2x+y-1=0与直线2x+y+1=0,直线3x+4y-2=0与直线2x+y+2=0的位置关系分别如何?,思考3:能根据图形确定直线3x+4y-2=0与直线2x+y+2=0的交点坐标吗?有什么办法求得这两条直线的交点坐标?,思考4:一般地。

5、,3.2.3 直线的一般方程,3.2 直线的方程,第三章 直线与方程,复习提问:,直线方程有几种形式?,点斜式:已知直线上一点P1(x1,y1)的坐标,和直线的斜率k,则直线的方程是,斜截式:已知直线的斜率k,和直线在y轴上的截距b则直线方程是,两点式:已知直线上两点P1(x1,y1),P2(x2,y2)则直线的方程是:,截距式:已知直线在X轴Y轴上的截距为a,b,则直线的方程是,上述四种直线方程,能否写成如下统一形式? ? x+ ? y+ ? =0,上述四式都可以写成直线方程的一般形式: Ax+By+C=0, A、B不同时为0。,讲解新课:,直角坐标系中,任何一条直线的方。

6、2.1.3 空间中直线与平面之间的位置关系,2.1 空间点、直线、平面之间的位置关系,第二章 点、直线、平面之间的位置关系,复习引入:,1、空间两直线的位置关系,(1)相交;(2)平行;(3)异面,2.公理4的内容是什么?,平行于同一条直线的两条直线互相平行.,3.等角定理的内容是什么?,空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。,4.等角定理的推论是什么?,如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.,5.什么是异面直线?什么是异面直线所成的角? 什么是异面直线垂直?异面直线定理的内容。

7、2.3.1 直线与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,思考?,一条直线 与一个平面垂直的意义是什么?,(一)直线与平面垂直的定义,如果一条直线 l 和一个平面内的任意一条直线都垂直,我们就说直线 l 和平面 互相垂直. 记作l ,l叫做的垂线, 叫做 l的垂面, l与的交点P叫做垂足,1.如果一条直线 l 和一个平面内的无数条直线都垂直,则直线 l和平面 互相垂直( ),思考:,(性质定理),2.b是平面内任一直线,a,则ab (),a,D,B,A,C,B,D,C,容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与。

8、3.1.2 两条直线平行与垂直的判定,3.1 直线的倾斜角与斜率,第三章 直线与方程,复习,三要素,情境导入,己知直线l1过点A(0,0) 、B(2,-1),直线l2过点C (4,2) 、D(2,-2),直线l3过点M(3,-5) 、N(-5,-1), 你 能在同一个坐标系内画出这三条直线,并根据 图形判断三直线之间的位置关系吗?它们的斜 率之间又有什么关系?,l1l3 , l2l1 , l2l3 .设l1, l2, l3的斜率分别为 k1, k2, k3, 则k1= , k2=2, k3= , 则k1= k3, k1k2=-1, k2k3=-1.,设两条不重合的直线l1、l2的斜率分别为k1、k2.,两条直线平行的判定,(3)若两条不重合的直线的斜率都不存在,它们 平行吗。

9、4.3.2 空间两点间的距离公式,4.3 空间直角坐标系,第四章 圆与方程,问题提出,1. 在平面直角坐标系中两点间的距离公式是什么?,2. 在空间直角坐标系中,若已知两个点的坐标,则这两点之间的距离是惟一确定的,我们希望有一个求两点间距离的计算公式,对此,我们从理论上进行探究.,知识探究(一):与坐标原点的距离公式,思考1:在空间直角坐标系中,坐标轴上的点A(x,0,0),B(0,y,0),C(0,0,z),与坐标原点O的距离分别是什么?,|OA|=|x|,|OB|=|y|,|OC|=|z|,思考2:在空间直角坐标系中,坐标平面上的点A(x,y,0),B(0,y,z),C。

10、2.1.2 空间中直线与直线之间的位置关系,2.1 空间点、直线、平面之间的位置关系,第二章 点、直线、平面之间的位置关系,复习引入:,1、同一平面内不重合两条直线有几种位置关系?,2、在同一平面内,同平行于一条直线的两条直线有什么位置关系?,(1)、相交:有且仅有一个公共点。,(2)、平行:在同一平面内没有公共点。,互相平行,提出问题:空间中的两条直线呢?,1.空间中两条直线的位置关系,观察:,观察教室内的日光灯管所在直线与黑板的左右两侧所在的直线,想一想:它们相交吗?平行吗?共面吗?,观察上方体的棱所在 直线,回答类似的问题.,思考。

11、,4.2.1 直线与圆的位置关系,4.2 直线、圆的位置关系,第四章 圆与方程,练习,1.已知直线l:Ax+By+C=0,圆C:,(r0),圆心C(a,b)到直线l的距离为d,若l与C相交,则d_r, 若l与C相切,则d_r,若l与圆相离,则d_r,2.圆心和弦的中点的连线 这条弦,圆心与切点的连线_ 过该点的切线。,=,垂直,垂直,。,方程是,的切线,的圆,,,过圆上点,的值为,相切,则,与圆,若直线,_,_,5,1),-,(y,3),-,(x,1),-,(2,4.,),D,(,a,0,2x,-,y,x,0,1,y,a)x,(1,.,3,2,2,2,2,=,+,=,+,=,+,+,+,A 1或-1 B 2或-2 C 1 D -1,X+2y=0,5、M(3.0)是圆x2+y2-8x-2y+10=0内一点,则过点M 最长的。

12、3.2.2 直线的两点式方程,3.2 直线的方程,第三章 直线与方程,问题:,若直线l经过点P1(1,2),P2(3,5),求直线l的方程。,直线方程的两点式:,已知直线上两点P1(x1,y1), P2(x2,y2)(其中x1x2, y1y2 ),如何求出通过这两点的直线方程呢?,思考:,讨论: 两点式方程不适用于什么直线?,当直线没有斜率或斜率为0时,即平行于坐标轴或与坐标轴重合的直线不能用点式求出它们的方程。,若点P1 ( x1 , y1 ),P2( x2 , y2)中有x1 x2或y1= y2,此时过这两点的直线方程是什么?,当x1 x2 时 方程为: x x,当 y1= y2时 方程为: y= y,解:将两点A(a,0。

13、,3.2.3 直线的一般方程,3.2 直线的方程,第三章 直线与方程,(一)填空,(二)填空 1过点(2,1),斜率为2的直线的方程是_ 2过点(2,1),斜率为0的直线方程是_ 3过点(2,1),斜率不存在的直线的方程是_,思考1:以上三个方程是否都是二元一次方程?,所有的直线方程是否都是二元一次方程?,思考2:对于任意一个二元一次方程(A,B不同时为零) 能否表示一条直线?,总结:,由上面讨论可知, (1)平面上任一条直线都可以用一个关于x,y的 二元一次方程表示, (2)任一关于x,y的二元一次方程都表示一条直线.,我们把关于x,y的二元一次方程 Ax+By+C=0 (A,B不同。

14、2.2.3 直线与平面平行的性质,2.2 直线、平面平行的判定及其性质,第二章 点、直线、平面之间的位置关系,一、复习回顾:,1、直线和平面有哪几种位置关系?,平行、相交、在平面内,2、反映直线和平面三种位置关系的依据是什么?,公共点的个数,没有公共点: 平行 仅有一个公共点:相交 无数个公共点:在平面内,如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.,3、直线和平面平行的判定定理,线面平行的判定定理解决了线面平行的条件;反之,在直线与平面平行的条件下,会得到什么结论?,直线和平面平行的性质,二、问。

15、2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,2.3.1 直线与平面垂直的判定,一.回顾复习:,1.直线和平面的位置关系 :,(1)直线在平面内 (2)直线和平面平行(3)直线和平面相交,垂直是一种特殊的相交,l,o,D,C,B,A,m,E,1.直线与平面垂直的定义:,如果直线 与平面 内的任意一条直线都垂直,我们就说直线 和平面 互相垂直。记作:,垂足,直线与平面的一条边垂直,2.直线与平面垂直的画法:,思考,除定义外,如何判断一条直线与平面垂直呢?,能不能把线面垂直问题转化为线线垂直问题?,线面平行的判定:,空间问题 平。

16、3.3.2 两点间的距离,3.3 直线的交点坐标与距离公式,第三章 直线与方程,已知平面上两点P1(x1,y1), P2(x2,y2),如何求P1 P2的距离| P1 P2 |呢?,两点间的距离,已知平面上两点P1(x1,y1), P2(x2,y2),如何求P1 P2的距离| P1 P2 |呢?,两点间的距离,Q,(x2,y1),已知平面上两点P1(x1,y1)和P2(x2,y2),直线P1P2的斜率为k,则两点间距离公式的两种变形分别为:,知识探究,或,例题分析,解:设所求点为P(x,0),于是有,解得x=1,所以所求点P(1,0),例题分析,例2、证明平行四边形四条边的平方和等于两条对角线的平方和。,(b,c),(a+b,c),(a,0),(0,0),解:。

17、3.3.3 点到直线的距离3.3.4 两条平行直线间的距离【课时目标】 1会应用点到直线的距离公式求点到直线的距离2掌握两条平行直线间的距离公式并会应用3能综合应用平行与垂直的关系解决有关距离问题点到直线的距离 两条平行直线间的距离定义 点到直线的垂 线段的长度 夹在两条平行直线间_的长图示公式(或求法)点 P(x0,y 0)到直线l:AxByC 0 的距离d_两条平行直线l1:Ax ByC 10 与l2:Ax ByC 20 之间的距离d_一、选择题1点(2,3)到直线 y1 的距离为( )A1 B1 C0 D22原点到直线 3x4y 260 的距离是( )A B C D2677 265 245 2753点 P(x,y)在直线 xy。

18、3.3.4 两条平行直线间的距离,3.3 直线的交点坐标与距离公式,第三章 直线与方程,Q,思考:已知点P0(x0,y0)和直线l:Ax+By+C=0, 怎样求点P0到直线l的距离呢?,点到直线的距离,如图,P到直线l的距离,就是指从点P到直线l的垂线段PQ的长度,其中Q是垂足.,下面设A0,B 0, 我们进一步探求点到直线的距离公式:,思路一,利用两点间距离公式:,P0(x0,y0)到直线l:Ax+By+C=0的距离:,点到直线的距离:,例题分析,例1:已知点A(1,3),B(3,1),C(-1,0),求 的 面积,两条平行直线间的距离是指夹在两条平行直线间的公垂线段的长.,两条平行直线间的距离:,两条平行线 。

19、,3.3.3 点到直线的距离,3.3.4 两条平行直线间的距离,3.3 直线的交点坐标与距离公式,第三章 直线与方程,点到直线距离公式,x,y,P0 (x0,y0),O,|y0|,|x0|,x0,y0,点到直线距离公式,x,y,P0 (x0,y0),O,|x1-x0|,|y1-y0|,x0,y0,y1,x1,点到直线距离公式,x,y,P0 (x0,y0),O,x0,y0,S,R,Q,d,点到直线距离公式,x,y,P0 (x0,y0),O,S,R,Q,d,注意: 化为一般式,例1 求点P(-1,2)到直线2x+y-10=0; 3x=2的距离。,解: 根据点到直线的距离公式,得,如图,直线3x=2平行于y轴,,用公式验证,结果怎样??,小结,1.点到直线距离公式,2.特殊情况,注意: 化为一般式,x,y。

20、3.3.3 点到直线的距离,3.3 直线的交点坐标与距离公式,第三章 直线与方程,两点间的距离公式是什么?,已知点 ,则,x,y,O,复习引入,已知点 ,直线 ,如何求点 到直线 的距离?,点 到直线 的距离,是指从点 到直线 的垂线段 的长度,其中 是垂足,x,y,O,引入新课,问题,x,y,O,试一试,你能求出 吗?,点到直线的距离,讨论,思路一:直接法,点 之间的距离 ( 到 的距离),x,y,O,点到直线的距离,思路简单运算繁琐,回忆建立两点间的距离公式的过程,x,y,O,首先求出两条与坐标轴平行的线段的长度,然后利用勾股定理求出这两点间的距离(斜边长),点到直。

【人教A版高中数学必修二3.3.3 点到直线的距离课件1】相关PPT文档
人教A版高中数学必修二:2.3.2 平面与平面垂直的判定课件1
人教A版高中数学必修二:3.1.2 两条直线的平行与垂直的判定课件2
人教A版高中数学必修二:3.2.2 直线的两点式方程课件2
人教A版高中数学必修二:3.3.1 两条直线的交点坐标课件2
人教A版高中数学必修二:3.2.3 直线的一般式方程课件2
人教A版高中数学必修二:2.1.3《空间中直线与平面之间的位置关系》课件1
人教A版高中数学必修二:2.3.1 直线与平面垂直的判定课件2
人教A版高中数学必修二:3.1.2 两条直线的平行与垂直的判定课件1
人教A版高中数学必修二:4.3.2 空间两点间的距离公式课件2
人教A版高中数学必修二:2.1.2《空间中直线与直线之间的位置关系》课件1
人教A版高中数学必修二:4.2.1 直线与圆的位置关系1
人教A版高中数学必修二:3.2.2 直线的两点式方程课件1
人教A版高中数学必修二:3.2.3 直线的一般式方程课件1
人教A版高中数学必修二:2.2.3 直线与平面平行的性质课件1
人教A版高中数学必修二:2.3.1 直线与平面垂直的判定课件1
人教A版高中数学必修二:3.3.2 两点间的距离课件1
人教A版高中数学必修二:3.3.4 两条平行直线间的距离课件1
人教A版高中数学必修二:3.3.3 点到直线的距离课件1
【人教A版高中数学必修二3.3.3 点到直线的距离课件1】相关DOC文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开